An Efficient Process for Recycling Nd–Fe–B Sludge as High-Performance Sintered Magnets

Xiaowen Yin , Ming Yue , Qingmei Lu , Min Liu , Feng Wang , Yubing Qiu , Weiqiang Liu , Tieyong Zuo , Shanshun Zha , Xuliang Li , Xiaofei Yi

Engineering ›› 2020, Vol. 6 ›› Issue (2) : 165 -172.

PDF (2265KB)
Engineering ›› 2020, Vol. 6 ›› Issue (2) : 165 -172. DOI: 10.1016/j.eng.2019.11.007
Research
Article

An Efficient Process for Recycling Nd–Fe–B Sludge as High-Performance Sintered Magnets

Author information +
History +
PDF (2265KB)

Abstract

Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques, it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron (Nd–Fe–B) sintered magnets. In the present study, centerless grinding sludge from the Nd–Fe–B sintered magnet machining process was selected as the starting material. The sludge was subjected to a reduction-diffusion (RD) process in order to synthesize recycled neodymium magnet (Nd2Fe14B) powder; during this process, most of the valuable elements, including neodymium (Nd), praseodymium (Pr), gadolinium (Gd), dysprosium (Dy), holmium (Ho), and cobalt (Co), were recovered simultaneously. Calcium chloride (CaCl2) powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency. The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio. It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio (calcium/sludge) and reaction temperature were 40 wt% and 1050 °C, respectively. The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd–Fe–B sintered magnets with a remanence of 12.1 kG, and a coercivity of 14.6 kOe, resulting in an energy product of 34.5 MGOe. This recycling route promises a great advantage in recycling efficiency as well as in cost.

Keywords

Nd–Fe–B grinding sludge Recycled sintered magnets / Calcium reduction-diffusion / Rare-earth-rich alloy doping

Cite this article

Download citation ▾
Xiaowen Yin,Ming Yue,Qingmei Lu,Min Liu,Feng Wang,Yubing Qiu,Weiqiang Liu,Tieyong Zuo,Shanshun Zha,Xuliang Li,Xiaofei Yi. An Efficient Process for Recycling Nd–Fe–B Sludge as High-Performance Sintered Magnets. Engineering, 2020, 6(2): 165-172 DOI:10.1016/j.eng.2019.11.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

()

AI Summary AI Mindmap
PDF (2265KB)

1190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/