Rare Earth Permanent Magnets and Their Place in the Future Economy

Allan Trench, John P. Sykes

Engineering ›› 2020, Vol. 6 ›› Issue (2) : 115-117.

PDF(303 KB)
PDF(303 KB)
Engineering ›› 2020, Vol. 6 ›› Issue (2) : 115-117. DOI: 10.1016/j.eng.2019.12.007
Topic Insights

Rare Earth Permanent Magnets and Their Place in the Future Economy

Author information +
History +

Cite this article

Download citation ▾
Allan Trench, John P. Sykes. Rare Earth Permanent Magnets and Their Place in the Future Economy. Engineering, 2020, 6(2): 115‒117 https://doi.org/10.1016/j.eng.2019.12.007

References

[1]
Widmer JD, Martin R, Kimiabeigi M. Electric vehicle traction motors without rare earth magnets. Sustainable Mater Technol 2015;3:7–13.
[2]
Sykes JP, Wright JP, Trench A. Discovery, supply and demand: from metals of antiquity to critical metals. Trans Inst Min Metall B 2016;125(1):3–20.
[3]
Pavel CC, Lacal-Arántegui R, Marmier A, Schüler D, Tzimas E, Buchert M, et al. Substitution strategies for reducing the use of rare earths in wind turbines. Resour Policy 2017;52:349–57.
[4]
Lixandru A, Venkatesan P, Jönsson C, Poenaru I, Hall B, Yang Y, et al. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Waste Manag 2017;68:482–9.
[5]
Ali SH. Social and environmental impact of the rare earth industries. Resources 2014;3(1):123–34.
[6]
Hayes SM, Mccullough EA. Critical minerals: a review of elemental trends in comprehensive criticality studies. Resour Policy 2018;59:192–9.
[7]
Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, et al. Methodology of metal criticality determination. Environ Sci Technol 2012;46 (2):1063–70.
[8]
Gulley AL, Nassar NT, Xun S. China, the United States, and competition for resources that enable emerging technologies. Proc Natl Acad Sci USA 2018;115 (16):4111–5.
[9]
Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: a critical review. J Clean Prod 2013;51:1–22.
[10]
Swain N, Mishra S. A review on the recovery and separation of rare earths and transition metals from secondary resources. J Clean Prod 2019;220:884–98.
[11]
Seo Y, Morimoto S. Comparison of dysprosium security strategies in Japan for 2010–2030. Resour Policy 2014;39:15–20.
[12]
Sykes JP, Wright JP, Trench A, Miller P. An assessment of the potential for transformational market growth amongst the critical metals. Trans Inst Min Metall B 2016;125(1):21–56.
[13]
Skirrow RG, Huston DL, Mernagh TP, Thorne JP, Duffer H, Senior AB. Critical commodities for a high-tech world: Australia’s potential to supply global demand. Canberra: Geoscience Australia; 2013.
[14]
Weng ZH, Jowitt SM, Mudd GM, Haque N. Assessing rare earth element mineral deposit types and links to environmental impacts. Appl Earth Sci 2013;122:83–96.
[15]
Weng ZH, Jowitt SM, Mudd GM, Haque N. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol 2015;110 (8):1925–52.
[16]
Van Gosen BS, Verplanck PL, Seal Ii RR, Long KR, Gambogi J. Rare-earth elements. In: Schulz KJ, DeYoung JH, Seal RR, Bradley DC, editors. Critical mineral resources of the United States—economic and environmental geology and prospects for future supply. Reston: United States Geological Survey; 2017. p. 539–72.
[17]
Verplanck PL, Hitzman MW. Rare earth and critical elements in ore deposits. Littleton: Society of Economic Geologists; 2016.
[18]
Paulick H, Machacek E. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives. Resour Policy 2017;52:134–53.
[19]
Rudnick RL, Gao S. Composition of the continental crust. In: Rudnick RL, editor. The crust. Oxford: Elsevier-Pergamon; 2003. p. 1–64.
[20]
Gambogi J. Rare earths. Tolcin, editor. In: Mineral Commodity Summaries. Reston: United States Geological Survey; 2019. p. 132–3.
[21]
Flanagan DM. Copper. Tolcin, editor. Mineral Commodity Summaries. Reston: United States Geological Survey; 2019. p. 52–3.
[22]
Malthus TR. An essay on the principle of population. London: J. Johnson; 1798.
[23]
Demol J, Ho E, Soldenhoff K, Senanayake G. The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: a review. Hydrometallurgy 2019;188:123–39.
[24]
Klyucharev DS, Volkova NM, Comyn MF. The problems associated with using non-conventional rare-earth minerals. J Geochem Explor 2013;133:138–48.
[25]
Kumari A, Panda R, Jha MK, Kumar JR, Lee JY. Process development to recover rare earth metals from monazite mineral: a review. Miner Eng 2015;79:102–15.
[26]
Hidayah NN, Abidin SZ. The evolution of mineral processing in extraction of rare earth elements using liquid–liquid extraction: a review. Miner Eng 2018;121:146–57.
[27]
Belova VV. Development of solvent extraction methods for recovering rare earth metals. Theor Found Chem Eng 2017;51(4):599–609.
[28]
Cox C, Kynicky J. The rapid evolution of speculative investment in the REE market before, during, and after the rare earth crisis of 2010–2012. Extr Ind Soc 2018;5(1):8–17.
[29]
García MVR, Krzemien´ A, Manzanedo Del Campo MÁ, Álvarez MM, Gent MR. Rare earth elements mining investment: it is not all about China. Resour Policy 2017;53:66–76.
[30]
Fernandez V. Rare-earth elements market: a historical and financial perspective. Resour Policy 2017;53:26–45.
[31]
Jamaludin H, Lahiri-Dutt K. Could Lynas make a difference in the global political economy of rare earth elements in future? Resour Policy 2017;53:267–73.
[32]
Goonan TG. Rare earth elements—end use and recyclability. Scientific investigations report. Reston: United States Geological Survey; 2011. Report No.: 2011-5094.
[33]
DiFrancesco CA, Hedrick JB, Cordier DJ, Gambogi J. Rare earth statistics. Historical statistics for mineral and material commodities in the United States. Reston: United States Geological Survey; 2017.
[34]
Mathews JA, Tan H. Circular economy: lessons from China. Nature 2016;531 (7595):440–2.
[35]
Werner TT, Ciacci L, Mudd GM, Reck BK, Northey SA. Looking down under for a circular economy of indium. Environ Sci Technol 2018;52(4): 2055–62.
[36]
McDowall W, Geng Y, Huang B, Bartekova E, Bleischwitz R, Turkeli S, et al. Circular economy policies in China and Europe. J Ind Ecol 2017;21:651–61.
[37]
Ogunmakinde OE. A review of circular economy development models in China, Germany and Japan. Recycling 2019;4(27):1–14.
[38]
Brady K. Mining and metals and the circular economy. London: International Council on Mining & Metals; 2016.
[39]
Golev A, Lebre E, Corder G. The contribution of mining to the emerging circular economy. AusIMM Bull 2016:30–2.
[40]
Barteková E, Kemp R. Critical raw material strategies in different world regions. Maastricht: United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology; 2016.
[41]
Ku AY, Setlur AA, Loudis J. Impact of light emitting diode adoption on rare earth element use in lighting implications for yttrium, europium, and terbium demand. Electrochem Soc Interface 2015;24(4):45–9.
[42]
Pavel CC, Marmier A, Tzimas E, Schleicher T, Schuler D, Buchert M, et al. Critical raw materials in lighting applications: substitution opportunities and implication on their demand. Phys Status Solidi A 2016;213(11): 2937–46.
[43]
Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, et al. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 2012;46(6):3406–14.
[44]
International Copper Study Group. The world copper factbook. Lisbon: International Copper Study Group; 2019.
AI Summary AI Mindmap
PDF(303 KB)

Accesses

Citations

Detail

Sections
Recommended

/