On the Data-Driven Materials Innovation Infrastructure

Hong Wang, X.-D. Xiang, Lanting Zhang

Engineering ›› 2020, Vol. 6 ›› Issue (6) : 609-611.

PDF(341 KB)
PDF(341 KB)
Engineering ›› 2020, Vol. 6 ›› Issue (6) : 609-611. DOI: 10.1016/j.eng.2020.04.004
Views & Comments

On the Data-Driven Materials Innovation Infrastructure

Author information +
History +

Cite this article

Download citation ▾
Hong Wang, X.-D. Xiang, Lanting Zhang. On the Data-Driven Materials Innovation Infrastructure. Engineering, 2020, 6(6): 609‒611 https://doi.org/10.1016/j.eng.2020.04.004

References

[1]
Holdren JP. Materials genome initiative for global competitiveness [Internet]. Washington, DC: National Science and Technology Council; 2011 Jun [cited 2018 Mar 31]. Available from: https://www.mgi.gov/sites/ default/files/documents/materials_genome_initiative-final.pdf.
[2]
MGI strategic plan [Internet]. Washington, DC: National Science and Technology Council; [cited 2018 Mar 31]. Available from: https://www. mgi.gov/sites/default/files/documents/mgi_strategic_plan_-_dec_2014.pdf.
[3]
Accelerated metallurgy—the accelerated discovery of alloy formulations using combinatorial principles [Internet]. Luxembourg: The Community Research and Development Information Service; c1994–2019 [updated 2019 Aug 2; cited 2019 Mar 5]. Available from: https://cordis.europa.eu/project/id/263206.
[4]
Jarvis D, Raabe D, Singer R, van Houtte P, Vahlas C, Alford N, editors. Metallurgy Europe: a renaissance programme for 2012–2022. Strasbourg: EFS; 2012.
[5]
JST support program for starting up innovationhub, Information Integration, new scientific approach for materials research [Internet]. Tsukuba: National Institute for Materials Science; c2020 [cited 2019 Mar 5]. Available from: https://www.nims.go.jp/eng/research/MII-I/index.html.
[6]
Wang H, Xiang Y, Xiang X, Chen L. Materials genome enables research and development revolution. Sci Technol Rev 2015;33(10):13–9.
[7]
Wang H, Xiang X, Zhang L. Data + AI is the core of materials genomic engineering. Sci Technol Rev 2018;36(14):15–21.
[8]
Xiang X, Sun X, Briceño G, Lou Y, Wang K, Chang H, et al. A combinatorial approach to materials discovery. Science 1995;268(5218):1738–40.
[9]
Ceder G, Persson K. The stuff of dreams. Sci Am 2013;309(6):36–40.
[10]
Raccuglia P, Elbert KC, Adler PD, Falk C, Wenny MB, Mollo A, et al. Machinelearning-assisted materials discovery using failed experiments. Nature 2016;533(7601):73–6.
[11]
Hey T, Tansley S, Tolle KM, editors. The fourth paradigm: data-intensive scientific discovery. Redmond: Microsoft Research Press; 2009.
[12]
Ward C, Brinson LC, Galli G, Kalidindi SR, MehtaA, Meredig B, et al. Building a materials data infrastructure: opening new pathways to discovery and innovation in science and engineering [Internet]. Pittsburgh: The Minerals, Metals & Materials Society; [cited 2019 Mar 5]. Available from: http://www.tms.org/Publications/Studies/Materials_Data_ Infrastructure/Materials_Data_Infrastructure.aspx?hkey=d228f86c-e269-49a2- a638-395285b760e4.
[13]
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1(1):011002.
[14]
Curtarolo S, Setyawan W, Hart GLW, Jahnatek M, Chepulskii RV, Taylor RH, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 2012;58:218–26.
[15]
Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. Comput Mater 2015;1(1):15010.
[16]
Draxl C, Scheffler M. NOMAD: the FAIR concept for big data-driven materials science. MRS Bull 2018;43(9):676–82.
[17]
MatCloud [Internet]. Beijing: Materials Genetic Engineering Information Technology Application Laboratory; c2016 [cited 2019 Mar 5]. Available from: http://matcloud.cnic.cn/static/view/about.html.
[18]
Zakutayev A, Wunder N, Schwarting M, Perkins JD, White R, Munch K, et al. High throughput experimental materials database (2018) [Internet]. Denver: National Renewable Energy Laboratory; [cited 2019 Mar 5]. Available from: https://htem.nrel.gov/#/about/content.
[19]
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data 2016;3(1):160018.
[20]
Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD. Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European open science cloud. Inf Serv Use 2017;37(1):49–56.
[21]
China Standards of Testing and Materials (CSTM). T/CSTM 00120–2019: general rule for materials genome engineering data. Chinese standard. Beijing: Metallurgical Industry Press; 2019. Chinese.
AI Summary AI Mindmap
PDF(341 KB)

Accesses

Citations

Detail

Sections
Recommended

/