Neuromorphic Computing Advances Deep-Learning Applications

Chris Palmer

Engineering ›› 2020, Vol. 6 ›› Issue (8) : 854-856.

PDF(653 KB)
PDF(653 KB)
Engineering ›› 2020, Vol. 6 ›› Issue (8) : 854-856. DOI: 10.1016/j.eng.2020.06.010
News & Highlights

Neuromorphic Computing Advances Deep-Learning Applications

Author information +
History +

Cite this article

Download citation ▾
Chris Palmer. Neuromorphic Computing Advances Deep-Learning Applications. Engineering, 2020, 6(8): 854‒856 https://doi.org/10.1016/j.eng.2020.06.010

References

[1]
Imam N, Cleland T. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat Mach Intell 2020;2:181–91.
[2]
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Real-time image processing with a 2D semiconductor neural network vision sensor. 2019. arXiv: 1909.00205.
[3]
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579(7797):62–5.
[4]
Beyond today’s AI—new algorithmic approaches emulate the human brain’s interactions with the world [Internet]. Santa Clara: Intel Corporation; [cited 2020 May 15]. Available from: https://www.intel.com/content/www/us/en/ research/neuromorphic-computing.html.
[5]
Vergara A, Fonollosa J, Mahiques J, Trincavelli M, Rulkov N, Huerta R. On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines. Sensors Actuators B 2013;185: 462–77.
[6]
Borthakur A, Cleland T. Signal conditioning for learning in the wild. 2019. arXiv: 1907.05827.
AI Summary AI Mindmap
PDF(653 KB)

Accesses

Citations

Detail

Sections
Recommended

/