
Neuromorphic Computing Advances Deep-Learning Applications
Chris Palmer
Engineering ›› 2020, Vol. 6 ›› Issue (8) : 854-856.
Neuromorphic Computing Advances Deep-Learning Applications
[1] |
Imam N, Cleland T. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat Mach Intell 2020;2:181–91.
|
[2] |
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Real-time image processing with a 2D semiconductor neural network vision sensor. 2019. arXiv: 1909.00205.
|
[3] |
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579(7797):62–5.
|
[4] |
Beyond today’s AI—new algorithmic approaches emulate the human brain’s interactions with the world [Internet]. Santa Clara: Intel Corporation; [cited 2020 May 15]. Available from: https://www.intel.com/content/www/us/en/ research/neuromorphic-computing.html.
|
[5] |
Vergara A, Fonollosa J, Mahiques J, Trincavelli M, Rulkov N, Huerta R. On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines. Sensors Actuators B 2013;185: 462–77.
|
[6] |
Borthakur A, Cleland T. Signal conditioning for learning in the wild. 2019. arXiv: 1907.05827.
|
/
〈 |
|
〉 |