Prospects of Huygens’ Metasurfaces for Antenna Applications

George V. Eleftheriades, Minseok Kim, Vasileios G. Ataloglou, Ayman H. Dorrah

Engineering ›› 2022, Vol. 11 ›› Issue (4) : 21-26.

PDF(1908 KB)
PDF(1908 KB)
Engineering ›› 2022, Vol. 11 ›› Issue (4) : 21-26. DOI: 10.1016/j.eng.2021.05.011
Views & Comments

Prospects of Huygens’ Metasurfaces for Antenna Applications

Author information +
History +

Cite this article

Download citation ▾
George V. Eleftheriades, Minseok Kim, Vasileios G. Ataloglou, Ayman H. Dorrah. Prospects of Huygens’ Metasurfaces for Antenna Applications. Engineering, 2022, 11(4): 21‒26 https://doi.org/10.1016/j.eng.2021.05.011

References

[1]
Collin RE. Field theory of guided waves. 2nd ed. Toronto: Wiley–IEEE Press; 1990.
[2]
Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292(5514):77–9.
[3]
Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically L–C loaded transmission lines. IEEE Trans Microw Theory Tech 2002;50(12):2702–12.
[4]
Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications. Hoboken: John Wiley & Sons, Inc.; 2006.
[5]
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334(6054):333–7.
[6]
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110(19):197401.
[7]
Selvanayagam M, Eleftheriades GV. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Express 2013;21(12):14409–29.
[8]
Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110(20):203903.
[9]
Kuester EF, Mohamed MA, Piket-May M, Holloway CL. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003;51(10):2641–51.
[10]
Selvanayagam M, Eleftheriades GV. An active electromagnetic cloak using the equivalence principle. IEEE Antennas Wirel Propag Lett 2012;11:1226–9.
[11]
Chen M, Abdo-Sánchez E, Epstein A, Eleftheriades GV. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens’ metasurface for wide-angle refraction. Phys Rev B 2018;97(12). 125433.1–14.
[12]
Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun 2016;7:10360.
[13]
Raeker BO, Grbic A. Compound metaoptics for amplitude and phase control of wave fronts. Phys Rev Lett 2019;122(11):113901.
[14]
Dorrah AH, Eleftheriades GV. Bianisotropic Huygens’ metasurface pairs for nonlocal power-conserving wave transformations. IEEE Antennas Wirel Propag Lett 2018;17(10):1788–92.
[15]
Epstein A, Eleftheriades GV. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys Rev Lett 2016;117(25):256103.
[16]
Ataloglou VG, Eleftheriades GV. Surface-waves optimization for beamforming with a single omega-bianisotropic Huygens’ metasurface. In: Proceedings of 2020 IEEE International Symposium on Antennas Propagation and North American Radio Science Meeting; 2020 Jul 5–10; Montreal, QC, Canada; 2020. p. 905–6.
[17]
Chen M, Eleftheriades GV. Omega-bianisotropic wire-loop Huygens’ metasurface for reflectionless wide-angle refraction. IEEE Trans Antennas Propag 2020;68(3):1477–90.
[18]
Abdo-Sánchez E, Chen M, Epstein A, Eleftheriades GV. A leaky-wave antenna with controlled radiation using a bianisotropic Huygens’ metasurface. IEEE Trans Antennas Propag 2019;67(1):108–20.
[19]
Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, et al. A reconfigurable active Huygens’ metalens. Adv Mater 2017;29(17):1606422.
[20]
Clemente A, Dussopt L, Sauleau R, Potier P, Pouliguen P. 1-Bit reconfigurable unit cell based on PIN diodes for transmit-array applications in X-band. IEEE Trans Antennas Propag 2012;60(5):2260–9.
[21]
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light 2014;3(10):e218.
[22]
Li L, Li Y, Wu Z, Huo F, Zhang Y, Zhao C. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces. Proc IEEE 2015;103(7):1057–70.
[23]
Wu Z, Ra’di Y, Grbic A. Tunable metasurfaces: a polarization rotator design. Phys Rev X 2019;9(1):011036.
[24]
Kim M, Eleftheriades GV. Huygens’-metasurface-assisted reconfigurable leakywave antennas with dynamically-controlled radiation patterns. In: Proceedings of the 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials); 2020 Sep 27–Oct 3; New York City, NY, USA; 2020.
[25]
Wong AMH, Eleftheriades GV. Active Huygens’ metasurfaces for RF waveform synthesis in a cavity. In: Proceedings of the 2016 18th Mediterranean Electrotechnical Conference (MELECON); 2016 Apr 18–20; Lemesos, Cyprus; 2016.
[26]
Wong AMH, Eleftheriades GV. Active Huygens’ box: arbitrary electromagnetic wave generation with an electronically controlled metasurface. IEEE Trans Antennas Propag 2021;69(3):1455–68.
[27]
Dorrah AH, Eleftheriades GV. Peripherally excited phased array architecture for beam steering with reduced number of active elements. IEEE Trans Antennas Propag 2020;68(3):1249–60.
[28]
Oyesina KA, Wong AMH. Metasurface-enabled cavity antenna: beam steering with dramatically reduced fed elements. IEEE Antennas Wirel Propag Lett 2020;19(4):616–20.
[29]
Dorrah AH, Chen M, Eleftheriades GV. Bianisotropic Huygens’ metasurface for wideband impedance matching between two dielectric media. IEEE Trans Antennas Propag 2018;66(9):4729–42.
[30]
Taravati S, Eleftheriades GV. Full-duplex nonreciprocal beam steering by time-modulated phase-gradient metasurfaces. Phys Rev Appl 2020;14 (1):014027.
AI Summary AI Mindmap
PDF(1908 KB)

Accesses

Citations

Detail

Sections
Recommended

/