
Joint Modulations of Electromagnetic Waves and Digital Signals on A Single Metasurface Platform to Reach Programmable Wireless Communications
Xiang Wan, Chaokun Xiao, He Huang, Qiang Xiao, Wei Xu, Yueheng Li, Joerg Eisenbeis, Jiawei Wang, Ziai Huang, Qiang Cheng, Shi Jin, Thomas Zwick, Tiejun Cui
Engineering ›› 2022, Vol. 8 ›› Issue (1) : 86-95.
Joint Modulations of Electromagnetic Waves and Digital Signals on A Single Metasurface Platform to Reach Programmable Wireless Communications
In current wireless communication and electronic systems, digital signals and electromagnetic (EM) radiation are processed by different modules. Here, we propose a mechanism to fuse the modulation of digital signals and the manipulation of EM radiation on a single programmable metasurface. The programmable metasurface consists of massive subwavelength-scale digital coding elements. A set of digital states of all elements forms simultaneous digital information roles for modulation and the wave-control sequence code of the programmable metasurface. By designing digital coding sequences in the spatial and temporal domains, the digital information and far-field patterns of the programmable metasurface can be programmed simultaneously and instantly in desired ways. For the experimental demonstration of the mechanism, we present a programmable wireless communication system. The same system can realize transmissions of digital information in single-channel modes with beam-steerable capability and multichannel modes with multiple independent information. The measured results show the excellent performance of the programmable system. This work provides excellent prospects for applications in fifth- or sixth-generation wireless communications and modern intelligent platforms for unmanned aircrafts and vehicles.
joint radar and communication / programmable metasurface / massive multiple-in and multiple-out
[1] |
Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 2002;65(19):195104.
|
[2] |
Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SR. Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 2005;95(13):137404.
|
[3] |
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314(5801):977–80.
|
[4] |
Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 2008;7(1):31–7.
|
[5] |
Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9(5):387–96.
|
[6] |
Luo Y, Fernandez-Dominguez AI, Wiener A, Maier SA, Pendry JB. Surface plasmons and nonlocality: a simple model. Phys Rev Lett 2013;111(9):093901.
|
[7] |
Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305(5685):788–92.
|
[8] |
Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photon 2007;1:224–7.
|
[9] |
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334(6054):333–7.
|
[10] |
Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339(6125):1232009.
|
[11] |
Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4(4):041042.
|
[12] |
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13(2): 139–50.
|
[13] |
Wan X, Zhang L, Jia SL, Yin JY, Cui TJ. Horn antenna with reconfigurable beamrefraction and polarization based on anisotropic huygens metasurface. IEEE Trans Antennas Propag 2017;65(9):4427–34.
|
[14] |
Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag M 2012;54(2):10–35.
|
[15] |
Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11(5): 426–31.
|
[16] |
Martini E, Mencagli M, Gonzalez-Ovejero D, Maci S. Flat optics for surface waves. IEEE Trans Antennas Propag 2016;64(1):155–66.
|
[17] |
Wan X, Chen TY, Zhang Q, Yin JY, Tao Z, Zhang L, et al. Manipulations of dual beams with dual polarizations by full-tensor metasurfaces. Adv Opt Mater 2016;4(10):1567–72.
|
[18] |
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218.
|
[19] |
Cui TJ, Liu S, Zhang L. Information metamaterials and metasurfaces. J Mater Chem C 2017;5(15):3644–68.
|
[20] |
Liu S, Cui TJ. Concepts, working principles, and applications of coding and programmable metamaterials. Adv Opt Mater 2017;5(22):1700624.
|
[21] |
Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018;9(1):4334.
|
[22] |
Li L, Cui TJ. Information metamaterials-from effective media to real-time information processing systems. Nanophotonics 2019;8(5):703–24.
|
[23] |
Wan X, Qi MQ, Chen TY, Cui TJ. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep 2016;6(1):20663.
|
[24] |
Yang H, Cao X, Yang F, Gao J, Xu S, Li M, et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 2016;6(1):35692.
|
[25] |
Wan X, Chen TY, Chen XQ, Zhang L, Cui TJ. Beam forming of leaky waves at fixed frequency using binary programmable metasurface. IEEE Trans Antennas Propag 2018;66(9):4942–7.
|
[26] |
Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8(1):197.
|
[27] |
Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082.
|
[28] |
Luo Z, Cheng Y, Cao K, Qin Y, Wang H. Microwave computational imaging in frequency domain with reprogrammable metasurface. J Electron Imag 2018;27(6):063019.
|
[29] |
Han J, Li L, Tian S, Liu G, Liu H, Shi Y. Millimeter-wave imaging using 1-bit programmable metasurface: simulation model, design, and experiment. IEEE J Em Sel Top C 2020;10(1):52–61.
|
[30] |
Liu GY, Li L, Han JQ, Liu HX, Gao XH, Shi Y, et al. Frequency-domain and spatial-domain reconfigurable metasurface. ACS Appl Mater Interfaces 2020;12(20):23554–64.
|
[31] |
Rusek F, Persson D, Lau BK, Larsson EG, Marzetta TL, Edfors O, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 2013;30(1):40–60.
|
[32] |
Larsson EG, Edfors O, Tufvesson F, Marzetta TL. Massive MIMO for next generation wireless systems. IEEE Commun Mag 2014;52(2):186–95.
|
[33] |
Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 2014;52 (9):56–62.
|
[34] |
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Sur Tut 2016;18(3):1617–55.
|
[35] |
Ahmed I, Khammari H, Shahid A, Musa A, Kim KS, De Poorter E, et al. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Sur Tut 2018;20(4):3060–97.
|
[36] |
Heath RW, Gonzalez-Prelcic N, Rangan S, Roh W, Sayeed AM. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process 2016;10(3):436–53.
|
[37] |
Liang Le, Xu W, Dong X. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wire Commun Lett 2014;3(6):653–6.
|
[38] |
Venkateswaran V, Pivit F, Guan L. Hybrid RF and digital beamformer for cellular networks: algorithms, microwave architectures, and measurements. IEEE Trans Micro Theory Tech 2016;64(7):2226–43.
|
[39] |
Molisch AF, Ratnam VV, Han S, Li Z, Nguyen SLH, Li L, et al. Hybrid beamforming for massive MIMO: a survey. IEEE Commun Mag 2017;55(9):134–41.
|
[40] |
Sun L, Qin Y, Zhuang Z, Chen R, Zhang Y, Lu J, et al. A robust secure hybrid analog and digital receive beamforming scheme for efficient interference reduction. IEEE Access 2019;7:22227–34.
|
[41] |
Zhao J, Yang X, Dai JY, Cheng Q, Li X, Qi NH, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Nat Sci Rev 2019;6:231–8.
|
[42] |
Dai JY, Tang WK, Zhao J, Li X, Cheng Q, Ke JC, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv Mater Tech 2019;4(7):1900044.
|
[43] |
Dai JY, Zhao J, Cheng Q, Cui TJ. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl 2018;7(1):90–9.
|
[44] |
Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, et al. The future of wireless? Electron Lett 2019;55(7):360–1.
|
[45] |
Tang W, Li X, Dai JY, Jin S, Zeng Y, Cheng Q, et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun 2019;16(5):46–61.
|
[46] |
Tang W, Chen MZ, Chen X, Dai JY, Han Y, Renzo MD, et al. Wireless communications with reconfigurable intelligent surface: path loss, modeling and experimental measurement. 2019. arXiv:1911.05326.
|
[47] |
Cui TJ, Liu S, Bai GD, Ma Q. Direct transmission of digital message via programmable coding metasurface. Research 2019;2019:1–12.
|
[48] |
Tang WK, Dai JY, Chen MZ, Wang KK, Li X, Zhao X, et al. MIMO transmission through reconfigurable intelligent surface: system desing, analysis, and implementation. 2019. arXiv:1912.09955.
|
[49] |
Dai JY, Tang W, Yang LX, Li X, Chen MZ, Ke JC, et al. Realization of multimodulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans Antennas Propag 2020;68(3):1618–27.
|
[50] |
Hu S, Rusek F, Edfors O. Beyond massive MIMO: the potential of data transmission with large intelligent surfaces. IEEE Trans Signal Proc 2018;66(10): 2746–58.
|
[51] |
Hu S, Rusek F, Edfors O. Beyond massive MIMO: the potential of positioning with large intelligent surfaces. IEEE Trans Signal Proc 2018;66(7):1761–74.
|
[52] |
Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wire Commun 2019;18(11): 5394–409.
|
[53] |
Wu Q, Zhang R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag 2020;58(1): 106–12.
|
[54] |
Renzo MD, Zappone A, Debbah M, Alouini MS, Yuen C, de Rosny J, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and road ahead. IEEE J Sel Areas Commun 2020;38(11):2450–525.
|
[55] |
Abeywickrama S, Zhang R, Yuen C. Intelligent reflecting surface: practical phase shift model and beamforming optimization. In: Proceedings of 2020 IEEE International Conference on Communications; 2020 Jun 7–11; Dublin, Ireland. New York: IEEE; 2020. p. 1–6.
|
[56] |
Huang C, Hu S, Alexandropoulos GC, Zappone A, Yuen C, Zhang R, et al. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun 2020;27(5):118–25.
|
[57] |
Huang C, Zappone A, Alexandropoulos GC, Debbah M, Yuen C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun 2019;18(8):4157–70.
|
[58] |
Renzo MD, Debbah M, Phan-Huy DT, Zappone A, Alouini MS, Yuen C, et al. Smart radio environments empowered by AI reconfigurable meta-surfaces: an idea whose time has come. EURASIP J Wirel Comm 2019;129.
|
[59] |
Wan X, Zhang Q, Chen TY, Zhang L, Xu W, Huang H, et al. Multichannel direct transmissions of near-field information. Light Sci Appl 2019;8(1):60–7.
|
/
〈 |
|
〉 |