Ambient Noise Tomography for Coral Islands

Shaohong Xia, Changrong Zhang, Jinghe Cao

Engineering ›› 2023, Vol. 25 ›› Issue (6) : 182-193.

PDF(4505 KB)
PDF(4505 KB)
Engineering ›› 2023, Vol. 25 ›› Issue (6) : 182-193. DOI: 10.1016/j.eng.2021.09.022
Research
Article

Ambient Noise Tomography for Coral Islands

Author information +
History +

Abstract

As valuable land in the ocean, coral islands are not only important bases for making use of marine resources and protecting marine rights and interests, but also important for breakthrough research in many fields of earth science. Hence, the economical and efficient determination of the underground structure of coral islands has become significant in coral island engineering geology, but remains challenging for traditional marine geophysical prospecting and drilling methods. While ambient noise tomography with dense arrays has been widely used in continental regions, its applicability to coral islands remains undetermined. In this study, based on the data recorded by a dense array on an isolated coral island in the South China Sea, we analyzed the ambient noise characteristics and obtained a 3D subsurface structure of the coral island using ambient noise tomography. We made the following findings: ① The ambient noise frequencies can be roughly categorized into three levels: < 1, 1–5, and > 5 Hz. The spectral characteristics of the noise below 5 Hz were consistent at different stations, but there were significant differences in the characteristics of the noise above 5 Hz. ② For ambient noise frequencies below 5 Hz, cross-correlation functions with high quality could be obtained with only 24 h of waveform data. However, it was difficult to extract meaningful cross-correlation functions for ambient noise frequencies above 5 Hz. ③ The S-wave velocity in the coral island was higher toward the sea and lower toward the lagoon, which was consistent with the high degree of cementation of the outer reef flat stratum on the seaward side. ④ There were two low-velocity horizons at 25–75 and 200–300 m, which were in good agreement with the high-porosity horizons that were revealed by drilling core samples, reflecting the weathering history of the reef. Our research demonstrates that ambient noise tomography is a potentially economical, efficient, and environmentally friendly method for the geological prospecting of coral reefs.

Keywords

Coral island / Ambient noise tomography / Engineering geology / South China Sea

Cite this article

Download citation ▾
Shaohong Xia, Changrong Zhang, Jinghe Cao. Ambient Noise Tomography for Coral Islands. Engineering, 2023, 25(6): 182‒193 https://doi.org/10.1016/j.eng.2021.09.022

References

[1]
Zhao H, Wang L, Yuan J. Sustainable development of the coral reefs in the South China Sea Islands. Trop Geogr 2016;36(1):55‒65. Chinese.
[2]
An Z, Li G, Ma Y, Xu J, Ding D, Yang Z, et al. Research on coral reefal geological stability. Mark Sci 2018;42(3):113‒20. Chinese.
[3]
Bellwood DR, Hughes TP. Regional-scale assembly rules and biodiversity of coral reefs. Science 2001;292(5521):1532‒5.
[4]
Huang R, Yu K, Wang Y, Liu J, Zhang H. Progress of the study on coral reef remote sensing. Natl Remote Sens Bull 2019;23(6):1091‒112. Chinese.
[5]
Camoin GF, Webster JM. Coral reef response to Quaternary sea-level and environmental changes: state of the science. Sedimentology 2015;62(2):401‒28.
[6]
Sun Z, Zhao H. Coral reef engineering geology advancing of a new discipline. Hydrogeol Eng Geol 1998;42(1):1‒4. Chinese.
[7]
Kayanne H, Yamano H, Randall RH. Holocene sea-level changes and barrier reef formation on an oceanic island, Palau Islands, western Pacific. Sediment Geol 2002;150(1‒2):47‒60.
[8]
Gischler E, Hudson JH. Holocene development of the Belize Barrier Reef. Sediment Geol 2004;164(3‒4):223‒36.
[9]
Woodroffe CD, Webster JM. Coral reefs and sea-level change. Mar Geol 2014;352:248‒67.
[10]
Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, et al. The slump origin of the 1998 Papua New Guinea Tsunami. P Roy Soc A-Math Phy 2002;458(2020):763‒89.
[11]
Mulia IE, Watada S, Ho TC, Satake K, Wang Y, Aditiya A. Simulation of the 2018 Tsunami due to the flank failure of Anak Krakatau Volcano and implication for future observing systems. Geophys Res Lett 2020;47(14). e2020GL087334.
[12]
Cui Y, Ma L, Liu H, Huang J. Discussion on geophysical methods applied to investigation of coral island and reef. Rock Soil Mech 2014;35(S2):683‒9.
[13]
Walter DJ, Lambert DN, Young DC. Sediment facies determination using acoustic techniques in a shallow-water carbonate environment, Dry Tortugas, Florida. Mar Geol 2002;182(1‒2):161‒77.
[14]
Somoza L, Ercilla G, Urgorri V, León R, Medialdea T, Paredes M, et al. Detection and mapping of cold-water coral mounds and living Lophelia reefs in the Galicia Bank. Atlantic NW Iberia margin. Mar Geol 2014;349:73‒90.
[15]
Saqab MM, Bourget J. Seismic geomorphology and evolution of early-mid Miocene isolated carbonate build-ups in the Timor Sea, North West Shelf of Australia. Mar Geol 2016;379:224‒45.
[16]
Van Tuyl J, Alves TM, Cherns L. Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics offshore northwest Australia. Mar Pet Geol 2018;94:144‒65.
[17]
Huang X, Betzler C, Wu S, Bernhardt A, Eagles G, Han X, et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea. Mar Pet Geol 2020;117:104349.
[18]
Grainge AM, Davies KG. Reef exploration in the east Sengkang Basin, Sulawesi. Indonesia Mar Pet Geol 1985;2(2):142‒55.
[19]
Wu S, Yu K, Li X, Zhang H, Chen W. The evolution of the carbonate platforms in the South China Sea. Sci Technol Rev 2020;38(18):68‒74. Chinese.
[20]
Leclerc F, Feuillet N, Cabioch G, Deplus C, Lebrun JF, Bazin S, et al. The Holocene drowned reef of Les Saintes plateau as witness of a long-term tectonic subsidence along the Lesser Antilles volcanic arc in Guadeloupe. Mar Geol 2014;355:115‒35.
[21]
Webster JM, George NPJ, Beaman RJ, Hill J, Puga-Bernabéu Á, Hinestrosa G, et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope: a mechanism for generating tsunamis on the north-east Australian coast? Mar Geol 2016;371:120‒9.
[22]
Puga-Bernabéu A, Beaman RJ, Webster JM, Thomas AL, Jacobsen G. Gloria Knolls Slide: A prominent submarine landslide complex on the Great Barrier Reef margin of north-eastern Australia. Mar Geol 2017;385:68‒83.
[23]
Xiu C, Zhang D, Zhai S, Liu X, Bi D. Zricon U-Pb age of granitic rocks from the basement beneath the Shi Island, Xisha Islands and its geological significance. Mar Geol Quat Geol 2016;36(3):115‒26. Chinese.
[24]
Wu F, Xie X, Betzler C, Zhu W, Zhu Y, Guo L, et al. The impact of eustatic sealevel fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea). Palaeogeogr Palaeoclimatol Palaeoecol 2019;514:373‒85.
[25]
Yi L, Deng C, Yan W, Wu H, Zhang C, Xu W, et al. Neogen‒quaternary magnetostratigraphy of the biogenic reef sequence of core NK-1 in Nansha Qundao. South China Sea Sci Bull 2021;66(3):200‒3.
[26]
Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. High-resolution surfacewave tomography from ambient seismic noise. Science 2005;307(5715):1615‒8.
[27]
Yao H, van der Hilst RD, de Hoop MV. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. phase velocity maps. Geophys J Int 2006;166(2):732‒44.
[28]
Yao H, Beghein C, van der Hilst RD. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. crustal and uppermantle structure. Geophys J Int 2008;173(1):205‒19.
[29]
Lin FC, Ritzwoller MH, Townend J, Bannister S, Savage MK. Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int 2007;170(2):649‒66.
[30]
Lin FC, Li D, Clayton RW, Hollis D. High-resolution 3D shallow crustal structure in Long Beach, California: application of ambient noise tomography on a dense seismic array. Geophysics 2013;78(4):Q45‒56.
[31]
Roux P, Moreau L, Lecointre A, Hillers G, Campillo M, Ben-Zion Y, et al. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array. Geophys J Int 2016;206(2):980‒92.
[32]
Gu N, Wang K, Gao J, Ding N, Yao H, Zhang H. Shallow crustal structure of the Tanlu Fault Zone near Chao Lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis. Pure Appl Geophys 2018;176(3):1193‒206.
[33]
Mordret A, Roux P, Boue P, Ben-Zion Y. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophys J Int 2019;216(2):896‒905.
[34]
Yang H, Duan Y, Song J, Jiang X, Tian X, Yang W, et al. Fine structure of the Chenghai fault zone, Yunnan, China constrained from teleseismic travel time and ambient noise tomography. J Geophys Res Solid Earth 2020;125(7): e2020JB019565.
[35]
Cheng F, Xia J, Ajo-Franklin JB, Behm M, Zhou C, Dai T, et al. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation. J Geophys Res 2021;126(8). e2021JB021827.
[36]
Zhou C, Xia J, Pang J, Cheng F, Chen X, Xi C, et al. Near-surface geothermal reservoir imaging based on the customized dense seismic network. Surv Geophys 2021;42(3):673‒97.
[37]
Garambois S, Voisin C, Romero Guzman M, Brito D, Guillier B, Refloch A. Analysis of ballistic waves in seismic noise monitoring of water table variations in a water field site: added value from numerical modelling to data understanding. Geophys J Int 2019;219(3):1636‒47.
[38]
Grobbe N, Mordret A, Barde-Cabusson S, Ellison L, Lach M, Seo YH, et al. A multi-hydrogeophysical study of a watershed at Kaiwi Coast (O’ahu, Hawai’i), using seismic ambient noise surface wave tomography and self-potential data. Water Resour Res 2021;57(4):e2020WR029057.
[39]
Wang S, Sun X, Liu L, Zong J. Sub-surface structures and site effects extracted from ambient noise in metropolitan Guangzhou. China. Eng Geol 2020;268:105526.
[40]
Yang X, Gao H, Rathnayaka S, Li C. A comprehensive quality analysis of empirical green’s functions at ocean-bottom seismometers in Cascadia. Seismol Res Lett 2019;90(2A):744‒53.
[41]
Wolf FN, Lange D, Dannowski A, Thorwart M, Crawford W, Wiesenberg L, et al. 3D crustal structure of the Ligurian Sea revealed by ambient noise tomography using ocean bottom seismometer data. Solid Earth Discuss 2021;12:2597‒613.
[42]
Tian J, Lin J, Zhang F, Xu M, Zhang Y, Guo L, et al. Time correction of oceanbottom seismometers using improved ambient noise cross correlation of multicomponents and dual-frequency bands. Seismol Res Lett 2021;92(3):2004‒14.
[43]
Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 2007;169(3):1239‒60.
[44]
Schimmel M, Stutzmann E, Gallart J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys J Int 2011;184(1):494‒506.
[45]
Stehly L, Campillo M, Shapiro NM. A study of the seismic noise from its longrange correlation properties. J Geophys Res 2006;111(B10):B10306.
[46]
Herrmann RB. Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 2013;84(6):1081‒8.
[47]
Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 2004;156(3):631‒47.
[48]
Sun Z, Lu B. Elastic wave properties of coral reef rock in Nansha Islands. J Eng Geol 1999;7(2):175‒80. Chinese.
[49]
Zhao H, Wang L. Construction of artificial islands on coral reef in the South China Sea Islands. Trop Geogr 2017;37(5):681‒93. Chinese.
[50]
Luo Y, Li G, Xu W, Cheng J, Liu J, Yan W. Characteristics of Quaternary exposure surfaces in Well Nanke 1 and its relationship with sea level changes. J Trop Oceanogr 2022;41(1):15. Chinese.
[51]
Gutenberg B. Microseisms. Adv Geophys 1958;5:53‒92.
[52]
Asten MW. Geological control of the three-component spectra of Rayleighwave microseisms. Bull Seismol Soc Am 1978;68(6):1623‒36.
[53]
Bonnefoy-Claudet S, Cotton F, Bard PY. The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 2006;79(3‒4):205‒27.
[54]
Li C, Yao H, Fang H, Huang X, Wan K, Zhang H, et al. 3D near-surface shearwave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area. China Seismol Res Lett 2016;87(4):882‒92.
[55]
Li Z, Ni S, Zhang B, Bao F, Zhang S, Deng Y, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophys Res Lett 2016;43(10):4954‒61.
[56]
Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM. Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 2007;168(1):259‒74.
[57]
Liu Y, Zhang H, Fang H, Yao H, Gao J. Ambient noise tomography of threedimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. J Appl Geophys 2018;159:209‒17.
[58]
Yao H, van der Hilst RD. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys J Int 2010;179:1113‒32.
[59]
Froment B, Campillo M, Roux P, Gouédard P, Verdel A, Weaver RL. Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 2010;75(5):SA85‒93.
[60]
Delaney E, Ermert L, Sager K, Kritski A, Bussat S, Fichtner A. Passive seismic monitoring with nonstationary noise sources. Geophysics 2017;82(4): KS57‒70.
AI Summary AI Mindmap
PDF(4505 KB)

Accesses

Citations

Detail

Sections
Recommended

/