Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems

Ahsan Noor Khan, Young-ok Cha, Henry Giddens, Yang Hao

Engineering ›› 2022, Vol. 11 ›› Issue (4) : 27-41.

PDF(4296 KB)
PDF(4296 KB)
Engineering ›› 2022, Vol. 11 ›› Issue (4) : 27-41. DOI: 10.1016/j.eng.2021.10.019
Research
Review

Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems

Author information +
History +

Abstract

Highlights Bioelectronic devices have revolutionized the course of therapeutic treatment with their ability to harness neuronal activities in the human body. Recent advances in the field of soft, stretchable and biocompatible materials have enabled the development of bioelectronics to treat wide range of chronic ailments and disorders. Such treatments involve the confluence of electronics with neuronal cells or tissues, and mostly require surgical operation to implant the bioelectronic device. For recording neural activities and programming the device non-invasively, copious amount of research is in progress to devise wireless technology enabled bioelectronics. This paper discusses the latest developments in wireless bioelectronic devices for organ specific treatments, including gastrointestinal tract monitoring, retinal prosthesis, auditory nerve and brain stimulation. Major highlights include seminal components that mediate the overall wireless operation, such antennas, rectifiers, amplifier and integrated circuits. Moreover, the constituting materials of antennas, operational frequency and their integration with other electronic components are discussed. Replete perspective on the strategies to energize bioelectronics using wireless power transfer is explained. Communication protocols for biotelemetry are also discussed.The integration of electronics and biology has spawned bioelectronics and opened exciting opportunities to fulfill the unmet needs of therapeutic treatments. Recent developments in nanoelectronics and soft and biocompatible materials have shown potential applicability to clinical practices, including physiological sensing, drug delivery, cardiovascular monitoring, and brain stimulation. To date, most bioelectronic devices require wired connections for electrical control, making their implantation complicated and inconvenient for patients. As an alternative, wireless technology is proliferating to create bioelectronics that offer noninvasive control, biotelemetry, and wireless power transfer (WPT). This review paper provides a comprehensive overview of wireless bioelectronics and ongoing developments in their applications for organ-specific treatments, including disorders and dysfunctions. The main emphasis is on delineating the key features of antennas, namely their radiation characteristics, materials, integration with rest of the electronics, and experimental setup. Although the recent progress in wireless mediated bioelectronics is expected to enhance the control of its functionalities, there are still numerous challenges that need to be addressed for commercialization, as well as to address ever-expanding evolving future therapeutic targets.

Keywords

Bioelectronics / Neural implants / Drug delivery / Antennas / Wireless power

Cite this article

Download citation ▾
Ahsan Noor Khan, Young-ok Cha, Henry Giddens, Yang Hao. Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems. Engineering, 2022, 11(4): 27‒41 https://doi.org/10.1016/j.eng.2021.10.019

References

[1]
Mahmood M, Kwon S, Berkmen GK, Kim YS, Scorr L, Jinnah HA, et al. Soft nanomembrane sensors and flexible hybrid bioelectronics for wireless quantification of blepharospasm. IEEE Trans Biomed Eng 2020;67(11): 3094–100.
[2]
Kwon YT, Kim YS, Kwon S, Mahmood M, Lim HR, Park SW, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene formultimodal human–machine interfaces. Nat Commun 2020;11(1): 3450.
[3]
Lee H, Lee Y, Song C, Cho HR, Ghaffari R, Choi TK, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 2015;6(1):10059.
[4]
Liu Y, Yang T, Zhang Y, Qu G, Wei S, Liu Z, et al. Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv Mater 2019;31(39): e1902783.
[5]
Shi C, Costa T, Elloian J, Zhang Y, Shepard KL. A 0.065-mm3 monolithicallyintegrated ultrasonic wireless sensing mote for real-time physiological temperature monitoring. IEEE Trans Biomed Circ Sci 2020;14(3):412–24.
[6]
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32(15):e1901924.
[7]
Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28(22):4203–18.
[8]
Yao G, Yin C, Wang Q, Zhang T, Chen S, Lu C, et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J Materiomics 2020;6(2): 397–413.
[9]
Rangriz F, Khaleghi A, Balasingham I. Wireless link for micro-scale biomedical implants using magnetoelectric antenna. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15– 20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–4.
[10]
Taalla RV, Arefin MS, Kaynak A, Kouzani AZ. A review on miniaturized ultrasonic wireless power transfer to implantable medical devices. IEEE Access 2019;7:2092–106.
[11]
Khan AN, Ermakov A, Sukhorukov G, Hao Y. Radio frequency controlled wireless drug delivery devices. Appl Phys Rev 2019;6(4):041301.
[12]
Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv 2020;6(35): eabb1093.
[13]
Lee CY, Hsieh PH, Yang CH. A standard-cell-design-flow compatible energyrecycling logic with 70% energy saving. IEEE Trans Circuits I: Regular Papers 2016;63(1):70–9.
[14]
Chandrakasan AP, Verma N, Daly DC. Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 2008;10(1):247–74.
[15]
Hall PS, Hao Y. Antennas and propagation for body centric communications. In: Proceedings of 2006 First European Conference on Antennas and Propagation; 2006 Nov 6–10; Nice, France. New York: IEEE; 2006. p. 1–7.
[16]
Hao Y, Alomainy A, Zhao Y. Antenna design and propagation measurements and modelling for UWB wireless BAN. In: Allen B, Dohler M, Okon EE, Dphil WQM, Brown AK, Edwards DJ, editors. Ultra-wideband antennas and propagation: for communications, radar and imaging. Wiley Online Library; 2006. p. 331–59.
[17]
Hall PS, Hao Y. Antennas and propagation for body-centric wireless communications. 2nd ed. Boston: Artech house; 2012.
[18]
Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. Nat Rev Mater 2019;4(2): 83–98.
[19]
Alomainy A, Hao Y, Pasveer F. Modelling and characterisation of a compact sensor antenna for healthcare applications. In: Leonhardt S, Falck T, Mähönen P, editors. Proceedings of 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007); 2007 Mar 26–28; Aachen, Germany. Berlin: Springer; 2007. p. 3–8.
[20]
Kaim V, Kanaujia BK, Kumar S, Choi HC, Kim KW, Rambabu K. Ultra-miniature circularly polarized CPW-Fed implantable antenna design and its validation for biotelemetry applications. Sci Rep 2020;10(1):6795.
[21]
Nikolayev D, Zhadobov M, Joseph W, Martens L, Sauleau R. Radiation performance of highly miniaturized implantable devices. In: Proceedings of 2019 49th European Microwave Conference (EuMC); 2019 Sep 29–Oct 4; Paris, France. New York: IEEE; 2019. p. 216–9.
[22]
Wen D, Hao Y, Wang H, Zhou H. Design of a compact and low-profile wearable MIMO antenna for wireless personal area networks. In: Proceedings of 12th European Conferece on Antennas and Propagation (EuCAP 2018); 2018 Apr 9–13; London, UK. Brusselsp: EurAAP; 2018. p. 1–5.
[23]
Miah MS, Khan AN, Icheln C, Haneda K, Takizawa KI. Antenna system design for improved wireless capsule endoscope links at 433 MHz. IEEE Trans Antenn Propag 2019;67(4):2687–99.
[24]
Wen D, Hao Y, Munoz MO, Wang H, Zhou H. A compact and lowprofile MIMO antenna using a miniature circular high-impedance surface for wearable applications. IEEE Trans Antenn Propag 2018;66(1):96–104.
[25]
Bhattacharjee S, Maity S, Metya SK, Bhunia CT. Performance enhancement of implantable medical antenna using differential feed technique. Eng Sci Technol 2016;19(1):642–50.
[26]
Machnoor M, Paknahad J, Stang J, Lazzi G. Wireless telemetry system with independent power and data frequency resonance. IEEE Antennas Wirel Propag Lett 2020;19(4):690–4.
[27]
Islam MN, Yuce MR. Review of medical implant communication system (MICS) band and network. ICT Express 2016;2(4):188–94.
[28]
Lin R, Kim HJ, Achavananthadith S, Kurt SA, Tan SCC, Yao H, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11(1):444.
[29]
Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019;565(7739):361–5.
[30]
Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su CJ, et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat Electron 2018;1(12):652–60.
[31]
Fan X, Shangguan L, Howard R, Zhang Y, Peng Y, Xiong J, et al. Towards flexible wireless charging for medical implants using distributed antenna system. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking; 2020 Sep 21–25; London, UK. New York: Association for Computing Machinery; 2020. p. 1–15.
[32]
Zhang Y, Huo Z, Wang X, Han X, Wu W, Wan B, et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat Commun 2020;11(1):5629.
[33]
Xu S, Hansen BJ, Wang ZL. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 2010;1(1):93.
[34]
Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA 2014;111(5):1927–32.
[35]
Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008;451(7175):163–7.
[36]
Mercier PP, Lysaght AC, Bandyopadhyay S, Chandrakasan AP, Stankovic KM. Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 2012;30(12):1240–3.
[37]
Ma A, Poon ASY. Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst Mag 2015;15(2):54–60.
[38]
Dautov K, Hashmi M, Nauryzbayev G, Nasimuddin N. Recent advancements in defected ground structure-based near-field wireless power transfer systems. IEEE Access 2020;8:81298–309.
[39]
Miller L, Farajidavar A, Vegesna A. Use of bioelectronics in the gastrointestinal tract. Cold Spring Harb Perspect Med 2019;9(9):a034165.
[40]
Kong YL, Zou X, McCandler CA, Kirtane AR, Ning S, Zhou J, et al. 3D-printed gastric resident electronics. Adv Mater Technol 2019;4(3):1800490.
[41]
Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018;360(6391):915–8.
[42]
Liu X, Steiger C, Lin S, Parada GA, Liu J, Chan HF, et al. Ingestible hydrogel device. Nat Commun 2019;10(1):1–10.
[43]
Dey N, Ashour AS, Shi F, Sherratt RS. Wireless capsule gastrointestinal endoscopy: direction-of-arrival estimation based localization survey. IEEE Rev Biomed Eng 2017;10:2–11.
[44]
Faerber J, Gregson R, Clutton RE, Khan SR, Cochran S, Desmulliez MPY, et al. In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans Biomed Circ Sci 2018;12(1): 95–105.
[45]
Wang J, Leach M, Lim EG, Wang Z, Pei R, Huang Y. An implantable and conformal antenna for wireless capsule endoscopy. IEEE Antennas Wirel Propag Lett 2018;17(7):1153–7.
[46]
Zhu C, Hong L, Yang H, Sengupta K. Ingestible bioelectronics: a packaged, biomolecular, fluorescence-based sensor array with ultralow-power wireless interface. In: Proceedings of 2019 IEEE MTT-S International Microwave Symposium (IMS); 2019 Jun 2–7; Boston, MA, USA. New York: IEEE; 2019. p. 212–5.
[47]
Muhammad K, Khan S, Kumar N, Del Ser J, Mirjalili S. Vision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challenges. Future Gener Comput Syst 2020;113:266–80.
[48]
Alsunaydih FN, Arefin MS, Redoute JM, Yuce MR. A navigation and pressure monitoring system toward autonomous wireless capsule endoscopy. IEEE Sens J 2020;20(14):8098–107.
[49]
Kalantar-zadeh K, Ha N, Ou JZ, Berean KJ. Ingestible sensors. ACS Sens 2017;2(4): 468–83.
[50]
Bettinger CJ. Advances in materials and structures for ingestible electromechanical medical devices. Angew Chem Int Ed Engl 2018;57(52): 16946–58.
[51]
Cao H, Rao S, Tang SJ, Tibbals HF, Spechler S, Chiao JC. Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest Endosc 2013;77(4):649–53.
[52]
Shao G, Guo YX. Hybrid wireless positioning and charging with switched field helmholtz coils for wireless capsule endoscopy. IEEE Trans Microw Theory Technol 2020;68(3):904–13.
[53]
Leung BHK, Poon CCY, Zhang R, Zheng Y, Chan CKW, Chiu PWY, et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans Biomed Eng 2017;64(5):1106–14.
[54]
Sarestoniemi M, Pomalaza-Raez C, Kissi C, Berg M, Hamalainen M, Iinatti J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE Access 2020;8:55953–68.
[55]
Lo YK, Wang PM, Dubrovsky G, Wu MD, Chan M, Dunn J, et al. A wireless implant for gastrointestinal motility disorders. Micromachines 2018;9(1):17.
[56]
Biswas B, Karmakar A, Chandra V. Miniaturised wideband ingestible antenna for wireless capsule endoscopy. IET Microw Antennas Propag 2020;14(4): 293–301.
[57]
Neebha TM, Andrushia AD, Durga S. A state-of-art review on antenna designs for ingestible application. Electromagn Biol Med 2020;39(4):387–402.
[58]
Beardslee LA, Banis GE, Chu S, Liu S, Chapin AA, Stine JM, et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens 2020;5(4):891–910.
[59]
Lai J, Wang J, Zhao K, Jiang H, Chen L, Wu Z, et al. Design of a dual-polarized omnidirectional dielectric resonator antenna for capsule endoscopy system. IEEE Access 2021;9:14779–86.
[60]
Basir A, Zada M, Cho Y, Yoo H. A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization. IEEE Trans Antenn Propag 2020;68(10):6953–63.
[61]
Duan Z, Xu H, Gao SS, Geyi W. A circularly polarized omnidirectional antenna for wireless capsule endoscope system. IEEE Trans Antenn Propag 2021;69(4): 1896–907.
[62]
Bao Z, Guo YX. Novel miniaturized antenna with a highly tunable complex input impedance for capsules. IEEE Trans Antenn Propag 2021;69(6): 3106–14.
[63]
Christoe MJ, Phaoseree N, Han J, Michael A, Atakaramians S, Kalantar-Zadeh K. Meandering pattern 433 MHz antennas for ingestible capsules. IEEE Access 2021;9:91874–82.
[64]
Kim K, Yun S, Lee S, Nam S, Yoon YJ, Cheon C. A design of a high-speed and highefficiency capsule endoscopy system. IEEE Trans Biomed Eng 2012;59(4): 1005–11.
[65]
Barbi M, Garcia-Pardo C, Nevarez A, Pons Beltran V, Cardona N. UWB RSSbased localization for capsule endoscopy using a multilayer phantom and in vivo measurements. IEEE Trans Antenn Propag 2019;67(8):5035–43.
[66]
Bettinger CJ. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol 2015;33(10):575–85.
[67]
Hwang GT, Im D, Lee SE, Lee J, Koo M, Park SY, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 2013;7(5):4545–53.
[68]
Arefin MS, Redoute JM, Yuce MR. Integration of low-power ASIC and MEMS sensors for monitoring gastrointestinal tract using a wireless capsule system. IEEE J Biomed Health Inform 2018;22(1):87–97.
[69]
Nadeau P, El-Damak D, Glettig D, Kong YL, Mo S, Cleveland C, et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng 2017;1(3): 1–8.
[70]
Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, et al. Controllably degradable transient electronic antennas based on watersoluble PVA/TiO2 films. J Mater Sci 2018;53(4):2638–47.
[71]
Inui T, Koga H, Nogi M, Komoda N, Suganuma K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 2015;27(6):1112–6.
[72]
Song M, Ding M, Tiurin E, Xu K, Allebes E, Singh G, et al. A millimeter-scale crystal-less mics transceiver for insertable smart pills. IEEE Trans Biomed Circ Sci 2020;14(6):1218–29.
[73]
Lei W, Guo YX. Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems. IEEE Trans Antenn Propag 2018;66(11): 5706–15.
[74]
Basar MR, Ahmad MY, Cho J, Ibrahim F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens Actuator A Phys 2016;249:207–16.
[75]
Abid A, O’Brien JM, Bensel T, Cleveland C, Booth L, Smith BR, et al. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci Rep 2017;7(1):46745.
[76]
Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye 2017;31(10):1383–98.
[77]
Bahrami S, Moloudian G, Miri-Rostami SR, Bjorninen T. Compact microstrip antennas with enhanced bandwidth for the implanted and external subsystems of a wireless retinal prosthesis. IEEE Trans Antenn Propag 2021;69(5):2969–74.
[78]
Jeong J, Bae SH, Min KS, Seo JM, Chung H, KIM SJ. A miniaturized, eyeconformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng 2015;62(3): 982–9.
[79]
Ahnood A, Cheriton R, Bruneau A, Belcourt JA, Ndabakuranye JP, Lemaire W, et al. Laser driven miniature diamond implant for wireless retinal prostheses. Adv Biosyst 2020;4(11):e2000055.
[80]
Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng 2005;7(1):361–401.
[81]
Ng DC, Bai S, Yang J, Tran N, Skafidas E. Wireless technologies for closed-loop retinal prostheses. J Neural Eng 2009;6(6):065004.
[82]
Liu H, Zhao T, Jiang W, Jia R, Niu D, Qiu G, et al. Flexible battery-less bioelectronic implants: wireless powering and manipulation by near-infrared light. Adv Funct Mater 2015;25(45):7071–9.
[83]
Fallegger F, Schiavone G, Lacour SP. Conformable hybrid systems for implantable bioelectronic interfaces. Adv Mater 2020;32(15):e1903904.
[84]
Theogarajan LS. A low-power fully implantable 15-channel retinal stimulator chip. IEEE J Solid-Stat Circ 2008;43(10):2322–37.
[85]
Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 2009;56(10):2502–11.
[86]
Yang Z, Liu W, Basham E. Inductor modeling in wireless links for implantable electronics. IEEE Trans Magn 2007;43(10):3851–60.
[87]
Wu L, Yang Z, Basham E, Liu W. An efficient wireless power link for high voltage retinal implant. In: Proceedings of 2008 IEEE Biomedical Circuits and Systems Conference; 2008 Nov 20–22; Baltimore, MD, USA. New York: IEEE; 2008. p. 101–4.
[88]
Walter P, Kisva´ rday ZF, Görtz M, Alteheld N, Rossler G, Stieglitz T, et al. Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 2005;46(5):1780–5.
[89]
Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019;11:251584141881750.
[90]
Kaim V, Kanaujia BK, Rambabu K. Design of a miniaturised broadband 3 3 mm antenna for intraocular retinal prosthesis application. Electron Lett 2018;54(20):1150–2.
[91]
Gosalia K, Humayun MS, Lazzi G. Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis. IEEE Trans Antenn Propag 2005;53(8):2365–73.
[92]
Soora S, Gosalia K, Humayun MS, Lazzi G. A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis. IEEE Trans Antenn Propag 2008;56(3):622–9.
[93]
Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices 2014;11(1):23–30.
[94]
da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013;97(5): 632–6.
[95]
Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 2011;58(11):3197–205.
[96]
Paun MA, Paun VA. High-frequency 3-D model for the study of antennas in cochlear implants. IEEE Trans Compon Packaging Manuf Technol 2018;8(7): 1135–40.
[97]
Mehrkian S, Bayat Z, Javanbakht M, Emamdjomeh H, Bakhshi E. Effect of wireless remote microphone application on speech discrimination in noise in children with cochlear implants. Int J Pediatr Otorhinolaryngol 2019;125:192–5.
[98]
Loizou PC. Mimicking the human ear. IEEE Signal Process Mag 1998;15(5): 101–30.
[99]
Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev Biomed Eng 2017;10:136–61.
[100]
Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008;1:115–42.
[101]
Qian XH, Lee YC, Chang JH, Lin ST, Li SH, Wu TC, et al. Design and in vivo verification of a CMOS bone-guided cochlear implant microsystem. IEEE Trans Biomed Eng 2019;66(11):3156–67.
[102]
Hong S, Jeong S, Lee S, Sim B, Kim H, Kim J. Low EMF design of cochlear implant wireless power transfer system using a shielding coil. In: Proceedings of 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI); 2020 Jul 28–Aug 28; Reno, NV, USA. New York: IEEE; 2020. p. 623–5.
[103]
Buchegger T, Oßberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A. Ultra-wideband transceivers for cochlear implants. EURASIP J Adv Signal Process 2005;18:3069–75.
[104]
Vorobyov A, Hennemann C, Vasylchenko A, Decotignie JD, Baumgartner J. Folded loop antenna as a promising solution for a cochlear implant. In: Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014); 2014 Apr 6–11; The Hague, Netherlands. New York: IEEE; 2014. p. 1735–8.
[105]
Mattoso R, Novotny AA. Pointwise antennas design in hyperthermia therapy. Appl Math Model 2021;89(1):89–104.
[106]
Chen G, Stang J, Haynes M, Leuthardt E, Moghaddam M. Real-time threedimensional microwave monitoring of interstitial thermal therapy. IEEE Trans Biomed Eng 2018;65(3):528–38.
[107]
Choi WC, Lim S, Yoon YJ. Design of noninvasive hyperthermia system using transmit-array lens antenna configuration. IEEE Antennas Wirel Propag Lett 2016;15:857–60.
[108]
Bucci OM, Crocco L, Scapaticci R, Bellizzi G. On the design of phased arrays for medical applications. Proc IEEE 2016;104(3):633–48.
[109]
Cho YK, Rhim H, Noh S. Radiofrequency ablation versus surgical resection as primary treatment of hepatocellular carcinoma meeting the Milan criteria: a systematic review. J Gastroenterol Hepatol 2011;26(9):1354–60.
[110]
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3(8): 487–97.
[111]
Nguyen PT, Abbosh AM, Crozier S. 3-D focused microwave hyperthermia for breast cancer treatment with experimental validation. IEEE Trans Antenn Propag 2017;65(7):3489–500.
[112]
Yi Y, Chen J, Selvaraj M, Hsiang Y, Takahata K. Wireless hyperthermia stent system for restenosis treatment and testing with swine model. IEEE Trans Biomed Eng 2020;67(4):1097–104.
[113]
Luo Y, Dahmardeh M, Chen X, Takahata K. A resonant-heating stent for wireless endohyperthermia treatment of restenosis. Sens Actuators A Phys 2015;236:323–33.
[114]
Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015;9(6):5937–46.
[115]
Luo Y, Chen X, Dahmardeh M, Takahata K. RF-powered stent with integrated circuit breaker for safeguarded wireless hyperthermia treatment. J Microelectromech Syst 2015;24(5):1293–302.
[116]
Cai M, Takahata K, Mirabbasi S. A low-voltage low-power implantable telemonitoring system with application to endo-hyperthermia treatment of in-stent restenosis. In: Proceedings of 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS); 2020 Jun 16–19; Montreal, QC, Canada. New York: IEEE; 2020. p. 331–4.
[117]
Lazarus A. Remote, wireless, ambulatory monitoring of implantable pacemakers, cardioverter defibrillators, and cardiac resynchronization therapy systems: analysis of a worldwide database. Pacing Clin Electrophysiol 2007;30(s1):S2–12.
[118]
Kakria P, Tripathi NK, Kitipawang P. A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int J Telemed Appl 2015;2015:373474.
[119]
Hong YJ, Jeong H, Cho KW, Lu N, Kim DH. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 2019;29(19):1808247.
[120]
Alghrairi M, Sulaiman N, Mutashar S. Health care monitoring and treatment for coronary artery diseases: challenges and issues. Sensors 2020;20(15): 4303.
[121]
Lee SP, Ha G, Wright DE, Ma Y, Sen-Gupta E, Haubrich NR, et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit Med 2018;1(1):2.
[122]
Ren H, Jin H, Chen C, Ghayvat H, Chen W. A novel cardiac auscultation monitoring system based on wireless sensing for healthcare. IEEE J Transl Eng Health Med 2018;6:1–12.
[123]
Wang C, Qin Y, Jin H, Kim I, Granados Vergara JD, Dong C, et al. A low power cardiovascular healthcare system with cross-layer optimization from sensing patch to cloud platform. IEEE Trans Biomed Circuits Syst 2019;13(2):314–29.
[124]
Wang TW, Chu HW, Chen WX, Shih YT, Hsu PC, Cheng HM, et al. Singlechannel impedance plethysmography neck patch device for unobtrusive wearable cardiovascular monitoring. IEEE Access 2020;8:184909–19.
[125]
Lin CT, Chang KC, Lin CL, Chiang CC, Lu SW, Chang SS, et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans Inf Technol Biomed 2010;14(3):726–33.
[126]
Tseng KC, Lin BS, Liao LD, Wang YT, Wang YL. Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst J 2014;8(3):900–6.
[127]
Huang A, Chen C, Bian K, Duan X, Chen M, Gao H, et al. WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications. IEEE J Biomed Health Inform 2014;18(2):693–702.
[128]
Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, et al. Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: Proceedings of 2008 IEEE Symposium on Security and Privacy (sp 2008); 2008 May 18–22; Oakland, CA, USA. New York: IEEE; 2008. p. 129–42.
[129]
Lee SY, Su YC, Liang MC, Hong JH, Hsieh CH, Yang CM, et al. A programmable implantable micro-stimulator SOC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. In: Proceedings of 2011 IEEE International Solid-State Circuits Conference; 2011 Feb 20–24; San Francisco, CA, USA. New York: IEEE; 2011. p. 44–5.
[130]
Gutruf P, Yin RT, Lee KB, Ausra J, Brennan JA, Qiao Y, et al. Wireless, batteryfree, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat Commun 2019;10(1):5742.
[131]
Liu C, Jiang C, Song J, Chau KT. An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker. IEEE Trans Ind Electron 2019;66(5):4108–17.
[132]
Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for aimds and pacemakers. IEEE Trans Microw Theory Technol 2016;64(2):633–42.
[133]
Xiao C, Wei K, Cheng D, Liu Y. Wireless charging system considering eddy current in cardiac pacemaker shell: theoretical modeling, experiments, and safety simulations. IEEE Trans Ind Electron 2017;64(5):3978–88.
[134]
Abiri P, Abiri A, Packard RRS, Ding Y, Yousefi A, Ma J, et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci Rep 2017;7(1):6180.
[135]
Xiao C, Cheng D, Wei K. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation. IEEE Trans Power Electron 2018;33(6):4894–905.
[136]
Fontana N, Monorchio A, Torrico MOM, Hao Y. A numerical assesment of the effect of MRI surface coils on implanted pacemakers. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation; 2012 Jul 8–14; Chicago, IL, USA. New York: IEEE; 2012. p. 1–2.
[137]
Cruciani S, Campi T, Maradei F, Feliziani M. Numerical simulation of wireless power transfer system to recharge the battery of an implanted cardiac pacemaker. In: Proceedings of 2014 International Symposium on Electromagnetic Compatibility; 2014 Sep 1–4; Gothenburg, Sweden. New York: IEEE; 2014. p. 44–7.
[138]
Vulfin V, Sayfan-Altman S, Ianconescu R. Wireless power transfer for a pacemaker application. J Med Eng Technol 2017;41(4):325–32.
[139]
Asif SM, Iftikhar A, Hansen JW, Khan MS, Ewert DL, Braaten BD. A novel RFpowered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array. IEEE Access 2019;7:1139–48.
[140]
Fujimoto K, James JR. Mobile antenna systems handbook. 3rd ed. Boston: Artech house; 2008.
[141]
Asif SM, Hansen J, Khan MS, Walden SD, Jensen MO, Braaten BD, et al. Design and in vivo test of a batteryless and fully wireless implantable asynchronous pacing system. IEEE Trans Biomed Eng 2016;63(5):1070–81.
[142]
Amundson MD, Von Arx JA, Linder WJ, Rawat P, Mass WR, inventors; Cardiac Pacemakers, Inc., assignee. Circumferential antenna for an implantable medical device. United States patent US 6456256. 2002 Sep 24.
[143]
Cao Z, Chen P, Ma Z, Li S, Gao X, Wu RX, et al. Near-field communication sensors. Sensors 2019;19(18):3947.
[144]
Lee S, Seo W, Ito K, Choi J. Design of an implanted compact antenna for an artificial cardiac pacemaker system. IEICE Electron Express 2011;8(24): 2112–7.
[145]
Furse C. Design an antenna for pacemaker communication. Microw RF 2000;39(3):73.
[146]
Zhang H, Jackson JK, Chiao M. Microfabricated drug delivery devices: design, fabrication, and applications. Adv Funct Mater 2017;27(45):1703606.
[147]
Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017;12:7291–309.
[148]
Nafea M, Nawabjan A, Ali MS. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens Actuators A Phys 2018;279:191–203.
[149]
Ali MS, Takahata K. Wireless microfluidic control with integrated shapememory-alloy actuators operated by field frequency modulation. J Micromech Microeng 2011;21(7):075005.
[150]
Gao W, Li J, Cirillo J, Borgens R, Cho Y. Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 2014;30(26):7778–88.
[151]
Yi Y, Kosel J. A remotely operated drug delivery system with dose control. Sens Actuators A Phys 2017;261:177–83.
[152]
Li PY, Givrad TK, Sheybani R, Holschneider DP, Maarek JM, Meng E. A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip 2010;10(1):101–10.
[153]
Reddy MA, Pradhan BK, Qureshi D, Pal SK, Pal K. Internet-of-Things-enabled dual-channel iontophoretic drug delivery system for elderly patient medication management. J Med Device 2020;14(1):011104.
[154]
Khan AN, Wen D, Liu Y, Sukhorukov G, Hao Y. An ultrawideband conformal antenna for implantable drug delivery device. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15–20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–3.
[155]
Koo J, MacEwan MR, Kang SK, Won SM, Stephen M, Gamble P, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med 2018;24(12):1830–6.
[156]
Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006;24(4):437–8.
[157]
Liu J, Liu Z, Li X, Zhu L, Xu G, Chen Z, et al. Wireless, battery-free and wearable device for electrically controlled drug delivery: sodium salicylate released from bilayer polypyrrole by near-field communication on smartphone. Biomed Microdevices 2020;22(3):53.
[158]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26(11): 1261–8.
[159]
Patel D, Chaudhary SA, Parmar B, Bhura N. Transdermal drug delivery system: a review. Pharma Innov 2012;1(4):66–75.
[160]
Löffler S, Melican K, Nilsson KPR, Richter-Dahlfors A. Organic bioelectronics in medicine. J Intern Med 2017;282(1):24–36.
[161]
Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem Rev 2016;116(21):13009–41.
[162]
Boehler C, Aqrawe Z, Asplund M. Applications of PEDOT in bioelectronic medicine. Bioelectron Med 2019;2(2):89–99.
[163]
Chapman CAR, Cuttaz EA, Goding JA, Green RA. Actively controlled local drug delivery using conductive polymer-based devices. Appl Phys Lett 2020;116(1): 010501.
[164]
Kim H, Kwon S, Kwon YT, Yeo WH. Soft wireless bioelectronics and differential electrodermal activity for home sleep monitoring. Sensors 2021;21(2):354.
[165]
Rwei AY, Lu W, Wu C, Human K, Suen E, Franklin D, et al. A wireless, skininterfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc Natl Acad Sci USA 2020;117(50):31674–84.
[166]
Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32(15): 1902133.
[167]
Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016;10(7):6510–8.
[168]
Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett 2016;16(10):6042–51.
[169]
Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater 2017;29(40): 1703456.
[170]
Kim H, Kim YS, Mahmood M, Kwon S, Zavanelli N, Kim HS, et al. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv Sci 2020;7(15):2000810.
[171]
Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6(40): eaay9842.
[172]
Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, et al. Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res 2018;51(11):2820–8.
[173]
Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 2015;74:1061–8.
[174]
Kim YS, Mahmood M, Lee Y, Kim NK, Kwon S, Herbert R, et al. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. Adv Sci 2019;6(17):1900939.
[175]
Boe AJ, Koch LLM, O’Brien MK, Shawen N, Rogers JA, Lieber RL, et al. Automating sleep stage classification using wireless, wearable sensors. NPJ Digit Med 2019;2(1):1–9.
[176]
Boucsein W. Electrodermal activity. 2nd ed. Boston: Springer; 2012.
[177]
Kim H, Kim YS, Mahmood M, Kwon S, Epps F, Rim YS, et al. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens Bioelectron 2021;173:112764.
[178]
Balasubramaniam S, Wirdatmadja SA, Barros MT, Koucheryavy Y, Stachowiak M, Jornet JM. Wireless communications for optogenetics-based brain stimulation: present technology and future challenges. IEEE Commun Mag 2018;56(7):218–24.
[179]
Thimot J, Shepard KL. Bioelectronic devices: wirelessly powered implants. Nat Biomed Eng 2017;1(3):1–2.
[180]
Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015;12(10):969–74.
[181]
Burton A, Obaid SN, Vázquez-Guardado A, Schmit MB, Stuart T, Cai L, et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc Natl Acad Sci USA 2020;117(6):2835–45.
[182]
Zhang H, Gutruf P, Meacham K, Montana MC, Zhao X, Chiarelli AM, et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci Adv 2019;5(3):aaw0873.
[183]
Mulberry G, White KA, Kim BN. A wirelessly powered implantable CMOS neural recording sensor array using pulse-based neural amplifier. 2019. bioRxiv:809509.
[184]
Zhang Y, Mickle AD, Gutruf P, McIlvried LA, Guo H, Wu Y, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5(7): aaw5296.
[185]
Song E, Li J, Won SM, Bai W, Rogers JA. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater 2020;19(6):590–603.
[186]
Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020;6(1):23.
[187]
Han S, Shin G. Biodegradable optical fiber in a soft optoelectronic device for wireless optogenetic applications. Coatings 2020;10(12):1153.
[188]
Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freelybehaving animals. J Neural Eng 2011;8(4):046021.
[189]
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3(6): 1601649.
[190]
Fiáth R, Márton AL, Mátyás F, Pinke D, Márton G, Tóth K, et al. Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci Rep 2019;9(111):1–17.
[191]
Steinmetz NA, Koch C, Harris KD, Carandini M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr Opin Neurobiol 2018;50:92–100.
[192]
Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014;7:24.
[193]
Tsai AC, Huang ACW, Yu YH, Kuo CS, Hsu CC, Lim YS, et al. A wireless magnetic resonance device for optogenetic applications in an animal model. Sensors 2020;20(20):5869.
[194]
Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst Nanoeng 2020;6(1):64.
[195]
Manoufali M, Bialkowski K, Mohammed BJ, Mills PC, Abbosh A. Near-field inductive-coupling link to power a three-dimensional millimeter-size antenna for brain implantable medical devices. IEEE Trans Biomed Eng 2018;65(1):4–14.
[196]
Singer A, Dutta S, Lewis E, Chen Z, Chen JC, Verma N, et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 2020;107(4):631–43.
[197]
Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 2015;33(12):1280–6.
[198]
Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA 2019;116(43):21427–37.
AI Summary AI Mindmap
PDF(4296 KB)

Accesses

Citations

Detail

Sections
Recommended

/