A Vision of Materials Genome Engineering in China

Jianxin Xie, Yanjing Su, Dawei Zhang, Qiang Feng

Engineering ›› 2022, Vol. 10 ›› Issue (3) : 10-12.

PDF(236 KB)
PDF(236 KB)
Engineering ›› 2022, Vol. 10 ›› Issue (3) : 10-12. DOI: 10.1016/j.eng.2021.12.008
Views & Comments

A Vision of Materials Genome Engineering in China

Author information +
History +

Cite this article

Download citation ▾
Jianxin Xie, Yanjing Su, Dawei Zhang, Qiang Feng. A Vision of Materials Genome Engineering in China. Engineering, 2022, 10(3): 10‒12 https://doi.org/10.1016/j.eng.2021.12.008

References

[1]
Shechtman D. Current challenges in materials science and engineering [presentation]. 2018 World Forum on Scientific and Technological Innovation; 2018 Aug 10–12; Beijing, China, 2018.
[2]
Group on Advanced Materials. Materials Genome Initiative for global competitiveness. Washington, DC: White House Office of Science and Technology Policy; 2011.
[3]
Wang H, Zhang LT, Yang ML, Su YJ, Liu Q, Xiang XD, et al. T/CSTM 00120–2019: General rule for materials genome engineering data. Chinese standard. Beijing: Chinese Society for Testing and Materials; 2019. Chinese.
[4]
The Minerals, Metals, and Materials Society (TMS). Creating the nextgeneration Materials Genome Initiative workforce. Pittsburgh: TMS; 2019.
[5]
Su YJ, Fu HD, Bai Y, Jiang X, Xie JX. Progress in materials genome engineering in China. Acta Metall Sin 2020;56(10):1313–23. Chinese.
[6]
Li MX, Zhao SF, Lu Z, Hirata A, Wen P, Bai HY, et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019;569 (7754):99–103.
[7]
Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018;563(7732):546–50.
[8]
Liu BY, Liu F, Yang N, Zhai XB, Zhang L, Yang Y, et al. Large plasticity in magnesium mediated by pyramidal dislocations. Science 2019;365 (6448):73–5.
[9]
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018;563 (7732):541–5.
[10]
Wang C, Fu H, Jiang L, Xue D, Xie J. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater 2019;5 (1):1–8.
AI Summary AI Mindmap
PDF(236 KB)

Accesses

Citations

Detail

Sections
Recommended

/