Dynamic Modeling Framework of Sediment Trapped by Check-Dam Networks: A Case Study of a Typical Watershed on the Chinese Loess Plateau

Pengcheng Sun, Yiping Wu

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 209-221.

PDF(4468 KB)
PDF(4468 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 209-221. DOI: 10.1016/j.eng.2021.12.015
Research
Article

Dynamic Modeling Framework of Sediment Trapped by Check-Dam Networks: A Case Study of a Typical Watershed on the Chinese Loess Plateau

Author information +
History +

Abstract

Check-dam construction is an effective and widely used method for sediment trapping in the Yellow River Basin and other places over the world that are prone to severe soil erosion. Quantitative estimations of the dynamic sediment trapped by check dams are necessary for evaluating the effects of check dams and planning the construction of new ones. In this study, we propose a new framework, named soil and water assessment tool (SWAT)-dynamic check dam (DCDam), for modeling the sediment trapped by check dams dynamically, by integrating the widely utilized SWAT model and a newly developed module called DCDam. We then applied this framework to a typical loess watershed, the Yan River Basin, to assess the time-varying effects of check-dam networks over the past 60 years (1957-2016). The DCDam module generated a specific check-dam network to conceptualize the complex connections at each time step (monthly). In addition, the streamflow and sediment load simulated by using the SWAT model were employed to force the sediment routing in the check-dam network. The evaluation results revealed that the SWAT-DCDam framework performed satisfactorily, with an overestimation of 11.50%, in simulating sediment trapped by check dams, when compared with a field survey of the accumulated sediment deposition. For the Yan River Basin, our results indicated that the designed structural parameters of check dams have evolved over the past 60 years, with higher dams (37.14% and 9.22% increase for large dams and medium dams, respectively) but smaller controlled areas (46.03% and 10.56% decrease for large dams and medium dams, respectively) in recent years. Sediment retained by check dams contributed to approximately 15.00% of the total sediment load reduction in the Yan River during 1970-2016. Thus, our developed framework can be a promising tool for evaluating check-dam effects, and this study can provide valuable information and support to decision-making for soil and water conservation and check-dam planning and management.

Graphical abstract

Keywords

Check dams / Dynamic check dam (DCDam) / Loess Plateau / Sediment trapping / SWAT

Cite this article

Download citation ▾
Pengcheng Sun, Yiping Wu. Dynamic Modeling Framework of Sediment Trapped by Check-Dam Networks: A Case Study of a Typical Watershed on the Chinese Loess Plateau. Engineering, 2023, 27(8): 209‒221 https://doi.org/10.1016/j.eng.2021.12.015

References

[1]
P. Borrelli, D.A. Robinson, L.R. Fleischer, E. Lugato, C. Ballabio, C. Alewell, et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun, 8 (2017), p. 2013.
[2]
R. Lal. Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci, 17 (4) (1998), pp. 319-464.
[3]
P. Panagos, A. Katsoyiannis. Soil erosion modelling: the new challenges as the result of policy developments in Europe. Environ Res, 172 (2019), pp. 470-474.
[4]
S.D. Keesstra, J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerdà, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2 (2) (2016), pp. 111-128. DOI: 10.5194/soil-2-111-2016
[5]
S. Visser, S. Keesstra, G. Maas, M. De Cleen, C. Molenaar. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability, 11 (23) (2019), p. 6792. DOI: 10.3390/su11236792
[6]
N.A. Abbasi, X. Xu, M.E. Lucas-Borja, W. Dang, B. Liu. The use of check dams in watershed management projects: examples from around the world. Sci Total Environ, 676 (2019), pp. 683-691.
[7]
M.E. Lucas-Borja, G. Piton, M. Nichols, C. Castillo, Y. Yang, D.A. Zema. The use of check dams for soil restoration at watershed level: a century of history and perspectives. Sci Total Environ, 692 (2019), pp. 37-38.
[8]
G. Piton, S. Carladous, A. Recking, J.M. Tacnet, F. Liébault, D. Kuss, et al. Why do we build check dams in Alpine streams? An historical perspective from the French experience. Earth Surf Process Landf, 42 (1) (2017), pp. 91-108. DOI: 10.1002/esp.3967
[9]
P.R. Robichaud, K.A. Storrar, J.W. Wagenbrenner. Effectiveness of straw bale check dams at reducing post-fire sediment yields from steep ephemeral channels. Sci Total Environ, 676 (2019), pp. 721-731.
[10]
S. Galicia, J. Navarro-Hevia, A. Martínez-Rodríguez, J. Mongil-Manso, J. Santibáñez. ‘Green’, rammed earth check dams: a proposal to restore gullies under low rainfall erosivity and runoff conditions. Sci Total Environ, 676 (2019), pp. 584-594.
[11]
A. Alfonso-Torreño, Á. Gómez-Gutiérrez, S. Schnabel, J.F. Lavado Contador, J.J. de Sanjosé Blasco, M. Sánchez Fernández. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci Total Environ, 678 (2019), pp. 369-382.
[12]
Ministry of Water Resources of China. Bulletin of first national water census for soil and water conservation. China Water Power Press, Beijing (2013). [Chinese].
[13]
G. Zhao, G.M. Kondolf, X. Mu, M. Han, Z. He, Z. Rubin, et al. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena, 148 (2017), pp. 126-137.
[14]
L. Bai, N. Wang, J. Jiao, Y. Chen, B. Tang, H. Wang, et al. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau. China Int J Sediment Res, 35 (4) (2020), pp. 408-416.
[15]
Y. Liu, Y. Liu, Z. Shi, M. López-Vicente, G. Wu. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena, 195 (2020), p. 104787.
[16]
S. Yuan, Z. Li, P. Li, G. Xu, H. Gao, L. Xiao, et al. Influence of check dams on flood and erosion dynamic processes of a small watershed in the Loss Plateau. Water, 11 (4) (2019), p. 834. DOI: 10.3390/w11040834
[17]
C. Conesa-García, F. López-Bermúdez, R. García-Lorenzo. Bed stability variations after check dam construction in torrential channels (south-east Spain). Earth Surf Process Landf, 32 (14) (2007), pp. 2165-2184. DOI: 10.1002/esp.1521
[18]
Y. Wang, B. Fu, L. Chen, Y. , Y. Gao. Check dam in the Loess Plateau of China: engineering for environmental services and food security. Environ Sci Technol, 45 (24) (2011), pp. 10298-10299. DOI: 10.1021/es2038992
[19]
J. Mongil-Manso, V. Díaz-Gutiérrez, J. Navarro-Hevia, M. Espina, L. San Segundo. The role of check dams in retaining organic carbon and nutrients. A study case in the Sierra de Ávila mountain range (central Spain). Sci Total Environ, 657 (2019), pp. 1030-1040.
[20]
S. Keesstra, J.P. Nunes, P. Saco, T. Parsons, R. Poeppl, R. Masselink, et al. The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Sci Total Environ, 644 (2018), pp. 1557-1572.
[21]
A.R. Vaezi, M. Abbasi, S. Keesstra, A. Cerdà. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. Catena, 157 (2017), pp. 227-240.
[22]
G. Zhao, X. Mu, M. Han, Z. An, P. Gao, W. Sun, et al. Sediment yield and sources in dam-controlled watersheds on the northern Loess Plateau. Catena, 149 (2017), pp. 110-119.
[23]
F. Chen, N. Fang, Y. Wang, L. Tong, Z. Shi. Biomarkers in sedimentary sequences: indicators to track sediment sources over decadal timescales. Geomorphology, 278 (2017), pp. 1-11
[24]
M. Abedini, M.A. Md Said, F. Ahmad. Effectiveness of check dam to control soil erosion in a tropical catchment (The Ulu Kinta Basin). Catena, 97 (2012), pp. 63-70.
[25]
Y. Wei, Z. He, Y. Li, J. Jiao, G. Zhao, X. Mu. Sediment yield deduction from check-dams deposition in the weathered sandstone watershed on the North Loess Plateau, China. Land Degrad Dev, 28 (1) (2017), pp. 217-231. DOI: 10.1002/ldr.2628
[26]
I. Ramos-Diez, J. Navarro-Hevia, R. San Martín Fernández, J. Mongil-Manso. Final analysis of the accuracy and precision of methods to calculate the sediment retained by check dams. Land Degrad Dev, 28 (8) (2017), pp. 2446-2456. DOI: 10.1002/ldr.2778
[27]
X. Wang, Z. Jin, X. Zhang, J. Xiao, F. Zhang, Y. Pan. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion. J Soils Sed, 18 (2018), pp. 1147-1158. DOI: 10.1007/s11368-017-1888-9
[28]
Y. Wei, Z. He, J. Jiao, Y. Li, Y. Chen, H. Zhao. Variation in the sediment deposition behind check-dams under different soil erosion conditions on the Loess Plateau. China Earth Surf Process Landf, 43 (9) (2018), pp. 1899-1912. DOI: 10.1002/esp.4364
[29]
E. Li, X. Mu, G. Zhao, P. Gao, W. Sun. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stochastic Environ Res Risk Assess, 31 (7) (2017), pp. 1791-1803. DOI: 10.1007/s00477-016-1333-4
[30]
D. Pal, S. Galelli, H. Tang, Q. Ran. Toward improved design of check dam systems: a case study in the Loess Plateau, China. J Hydrol, 559 (2018), pp. 762-773.
[31]
B. Fu, S. Wang, Y. Liu, J. Liu, W. Liang, C. Miao. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci, 45 (1) (2017), pp. 223-243. DOI: 10.1146/annurev-earth-063016-020552
[32]
G. Zhao, X. Mu, Z. Wen, F. Wang, P. Gao. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev, 24 (5) (2013), pp. 499-510. DOI: 10.1002/ldr.2246
[33]
Wei Y. Characteristics of sediment deposition of typical check-dams and its effect on the sediment discharge variation of Yanhe and Huangfuchuan River Basin [dissertation]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences; 2017. Chinese.
[34]
J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams. Large area hydrologic modeling and assessment part I: model development. J Am Water Resour As, 34 (1) (1998), pp. 73-89. DOI: 10.1111/j.1752-1688.1998.tb05961.x
[35]
Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil and water assessment tool:theoretical documentation. Report. College Station: Texas A&M University System; 2011.
[36]
P. Sun, Y. Wu, X. Wei, B. Sivakumar, L. Qiu, X. Mu, et al. Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecol Eng, 142 (2020), p. 105611.
[37]
X. Zhang. Simulating eroded soil organic carbon with the SWAT-C model. Environ Model Softw, 102 (2018), pp. 39-48
[38]
J. Hu, Y. Wu, L. Wang, P. Sun, F. Zhao, Z. Jin, et al. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J Hydrol, 593 (2021), p. 125741.
[39]
Arnold J, Kiniry J, Srinivasan R, Williams J, Haney E, Neitsch S. SWAT 2012 input/output documentation. Report. College Station: Water Resources Institute; 2013.
[40]
Standardization Administration of China SAC. GB/T 16453.3-2008: Comprehensive control of soil and water conservation—technical specification—technique for erosion control of gullies. Chinese standard. Beijing: Standardization Administration of China (SAC); 2008. Chinese.
[41]
Y. Wang, N. Fang, F. Zhang, L. Wang, G. Wu, M. Yang. Effects of erosion on the microaggregate organic carbon dynamics in a small catchment of the Loess Plateau, China. Soil Tillage Res, 174 (2017), pp. 205-213
[42]
F. Zhao, Y. Wu, L. Qiu, Y. Sun, L. Sun, Q. Li, et al. Parameter uncertainty analysis of the SWAT model in a mountain-loess transitional watershed on the Chinese Loess Plateau. Water, 10 (6) (2018), p. 690. DOI: 10.3390/w10060690
[43]
Y. Xu, B. Fu, C. He. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol Earth Syst Sci, 17 (6) (2013), pp. 2185-2193. DOI: 10.5194/hess-17-2185-2013
[44]
X. Xu, H. Zhang, O. Zhang. Development of check-dam systems in gullies on the Loess Plateau. China Environ Sci Policy, 7 (2) (2004), pp. 79-86.
[45]
P. Sun, Y. Wu, Z. Yang, B. Sivakumar, L. Qiu, S. Liu, et al. Can the Grain-for-Green program really ensure a low sediment load on the Chinese Loess Plateau?. Engineering, 5 (5) (2019), pp. 855-864.
[46]
D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE, 50 (3) (2007), pp. 885-900.
[47]
H. Mann. Nonparametric tests against trend. Econometrica, 13 (3) (1945), pp. 245-259. DOI: 10.2307/1907187
[48]
M.G. Kendall.Rank correlation measures. (4th ed.), Charles Griffin, London (1975)
[49]
M.E. Lucas-Borja, D.A. Zema, M.D. Hinojosa Guzman, Y. Yang, A.C. Hernández, X. Xu, et al. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol Eng, 122 (2018), pp. 39-47.
[50]
J. Rodrigo-Comino, E. Terol, G. Mora, A. Giménez-Morera, A. Cerdà. Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards (Vitis vinifera L.). Earth Syst Environ, 4 (4) (2020), pp. 827-842. DOI: 10.1007/s41748-020-00191-5
[51]
W. Wang, N. Fang, Z. Shi, X. Lu. Prevalent sediment source shift after revegetation in the Loess Plateau of China: implications from sediment fingerprinting in a small catchment. Land Degrad Dev, 29 (11) (2018), pp. 3963-3973. DOI: 10.1002/ldr.3144
[52]
Y. Liang, J. Jiao. Characteristics of sediment retention by check-dams before and after the “Grain for Green” project in the He-Long Reach of the Yellow River. Acta Ecol Sin, 39 (12) (2019), pp. 4579-4586.
[53]
Yu X, Hou S, Li Y, Shi X. Identifying sediment sources in Wuding River during “7.26” flood in 2017. Hydro-Sci Eng 2019;(06):31-7. Chinese.
[54]
M.E. Lucas-Borja, G. Piton, Y. Yu, C. Castillo, D. Antonio Zema. Check dams worldwide: objectives, functions, effectiveness and undesired effects. Catena, 204 (2021), p. 105390.
[55]
T. Wang, J. Hou, P. Li, J. Zhao, Z. Li, E. Matta, et al. Quantitative assessment of check dam system impacts on catchment flood characteristics—a case in hilly and gully area of the Loess Plateau. China Nat Hazards, 105 (3) (2021), pp. 3059-3077. DOI: 10.1007/s11069-020-04441-7
[56]
J. Yang, X. Shi, Z. Zuo, X. Kong, P. Xiao. Survey and analysis on the construction and operation of warping dams in Henan Province. Soil Water Conserv, 10 (2020), pp. 10-12. [Chinese].
[57]
D. Ran, Z. Zuo, Y. Wu, X.M. Li, Z.H. Li, et al. Recent changes of streamflow and sediment load in the middle Yellow River Basin and their responses to human activities. Science Press, Beijing (2012). [Chinese].
[58]
Y. Wu, S. Liu, L. Qiu, Y. Sun. SWAT-DayCent coupler: an integration tool for simultaneous hydro-biogeochemical modeling using SWAT and DayCent. Environ Model Softw, 86 (2016), pp. 81-90.
[59]
P. Sun, Y. Wu, J. Xiao, J. Hui, J. Hu, F. Zhao, et al. Remote sensing and modeling fusion for investigating the ecosystem water-carbon coupling processes. Sci Total Environ, 697 (2019), p. 134064.
[60]
P. Borrelli, K. Van Oost, K. Meusburger, C. Alewell, E. Lugato, P. Panagos. A step towards a holistic assessment of soil degradation in Europe: coupling on-site erosion with sediment transfer and carbon fluxes. Environ Res, 161 (2018), pp. 291-298.
[61]
X. Mu, C. Gu, W. Sun, G. Zhao, P. Gao, S. Wang. Preliminary assessment effect of vegetation restoration on runoff generation pattern of the Loess Plateau. Yellow River, 41 (10) (2019), pp. 33-41. [Chinese].
[62]
L. Zhang, C. Hu, S. Jian, Q. Wu, G. Ran, Y. Xu. Identifying dominant component of runoff yield processes: a case study in a sub-basin of the middle Yellow River. Hydrol Res, 52 (5) (2021), pp. 1033-1047. DOI: 10.2166/nh.2021.046
[63]
Q. Ran, H. Tang, F. Wang, J. Gao. Numerical modelling shows an old check-dam still attenuates flooding and sediment transport. Earth Surf Proc Land, 46 (8) (2021), pp. 1549-1567. DOI: 10.1002/esp.5123
[64]
G.M. Brune. Trap efficiency of reservoirs. Eos, 34 (3) (1953), pp. 407-418. DOI: 10.1029/TR034i003p00407
[65]
X. Liu, Y. Gao, S. Ma. Dong GT Sediment reduction of warping dams and its timeliness in the Loess Plateau. J Hydraul Eng, 49 (02) (2018), pp. 145-155.
[66]
B.T. Rodrigues, D.A. Zema, J. González-Romero, M.T. Rodrigues, S. Campos, P. Galletero, et al. The use of unmanned aerial vehicles (UAVs) for estimating soil volumes retained by check dams after wildfires in mediterranean forests. Soil Syst, 5 (1) (2021), p. 9. DOI: 10.3390/soilsystems5010009
AI Summary AI Mindmap
PDF(4468 KB)

Accesses

Citations

Detail

Sections
Recommended

/