A Future Perspective on In-Sensor Computing

Wen Pan, Jiyuan Zheng, Lai Wang, Yi Luo

Engineering ›› 2022, Vol. 14 ›› Issue (7) : 19-21.

PDF(497 KB)
PDF(497 KB)
Engineering ›› 2022, Vol. 14 ›› Issue (7) : 19-21. DOI: 10.1016/j.eng.2022.01.009
Views & Comments

A Future Perspective on In-Sensor Computing

Author information +
History +

Cite this article

Download citation ▾
Wen Pan, Jiyuan Zheng, Lai Wang, Yi Luo. A Future Perspective on In-Sensor Computing. Engineering, 2022, 14(7): 19‒21 https://doi.org/10.1016/j.eng.2022.01.009

References

[[1]]
Chai Y. In-sensor computing for machine vision. Nature 2020;579(7797):32–3.
[[2]]
Zhou F, Chai Y. Near-sensor and in-sensor computing. Nat Electron 2020;3 (11):664–71.
[[3]]
Mead CA, Mahowald MA. A Silicon model of early visual processing. Neural Netw 1988;1(1):91–7.
[[4]]
Liu L, Wu N. Artificial intelligent vision chip. Micro/nano Electron Intell Manuf 2019;1:12–9. Chinese.
[[5]]
Liao F, Zhou F, Chai Y. Neuromorphic vision sensors: principle, progress and perspectives. J Semicond 2021;42(1):013105.
[[6]]
Wan T, Ma S, Liao F, Fan L, Chai Y. Neuromorphic sensory computing. Sci China Inf Sci 2022;65:141401.
[[7]]
Wu N. Neuromorphic vision chips. Sci China Inf Sci 2018;61:060421.
[[8]]
Komuro T, Kagami S, Ishikawa M. A dynamically reconfigurable SIMD processor for a vision chip. IEEE J Solid-State Circuits 2004;39(1):265–8.
[[9]]
Jendernalik W, Blakiewicz G, Jakusz J, Szczepanski S, Piotrowski R. An analog sub-miliwatt CMOS image sensor with pixel-level convolution processing. IEEE Trans Circuits Syst I Regul Pap 2013;60(2):279–89.
[[10]]
Shi C, Yang J, Han Y, Cao Z, Qin Q, Liu L, et al. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network. IEEE J Solid-State Circuits 2014;49(9):2067–82.
[[11]]
Feng P, Liu L, Wu N. Photoelectric and 3D integrated artificial intelligent vision chip. Micro/nano Electron Intell Manuf 2019;1:75–84. Chinese.
[[12]]
Yamazaki T, Katayama H, Uehara S, Nose A, Kobayashi M, Shida S, et al. 4.9 A 1 ms high-speed vision chip with 3D-stacked 140GOPS column-parallel PEs for spatio-temporal image processing. In: Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC); 2017 Feb 5–9; San Francisco, CA, USA. New York: IEEE; 2017. p. 82–3.
[[13]]
Amir MF, Ko JH, Na T, Kim D, Mukhopadhyay S. 3D stacked image sensor with deep neural network computation. IEEE Sens J 2018;18(10):4187–99.
[[14]]
Lie D, Chae K, Mukhopadhyay S. Analysis of the performance, power, and noise characteristics of a CMOS image sensor with 3D integrated image compression unit. IEEE Trans Compon Packaging Manuf Technol 2014;4(2):198–208.
[[15]]
Zhang J, Dai S, Zhao Y, Zhang J, Huang J. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst 2020;2(3):1900136.
[[16]]
Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces 2018;10(25):21472–80.
[[17]]
Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, et al. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 2019;13(2):2634–42.
[[18]]
Hu DC, Yang R, Jiang L, Guo X. Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction. ACS Appl Mater Interfaces 2018;10(7):6463–70.
[[19]]
Kumar M, Abbas S, Kim J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl Mater Interfaces 2018;10 (40):34370–6.
[[20]]
Lee M, Lee W, Choi S, Jo JW, Kim J, Park SK, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater 2017;29(28):1700951.
[[21]]
He HK, Yang R, Zhou W, Huang HM, Xiong J, Gan L, et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018;14(15):e1800079.
[[22]]
Wu JY, Chun YT, Li S, Zhang T, Wang J, Shrestha PK, et al. Broadband MoS2 fieldeffect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv Mater 2018;30(7):1705880.
[[23]]
Matsuo S. Heterogeneously integrated III–V photonic devices on Si. Semicond Semimetals 2019;101:43–89.
[[24]]
Teichert C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys Rep 2002;365(5–6):335–432.
[[25]]
Benaissa L, Di Cioccio L, Beilliard Y, Coudrain P, Dominguez S, Balan V, et al. Next generation image sensor via direct hybrid bonding. In: Proceedings of 17th IEEE Electronics Packaging and Technology Conference (EPTC); 2015 Dec 2–4; Singapore. New York: IEEE; 2015. p. 1–3.
[[26]]
Nau S, Wolf C, Sax S, List-Kratochvil EJ. Organic non-volatile resistive photoswitches for flexible image detector arrays. Adv Mater 2015;27(6):1048–52.
[[27]]
Wang H, Liu H, Zhao Q, Ni Z, Zou Y, Yang J, et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations. Adv Mater 2017;29(32):1701772.
[[28]]
Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater 2018;30(46):e1803961.
[[29]]
Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579(7797):62–6.
[[30]]
Shawkat MSA, Sayyarparaju S, McFarlane N, Rose GS. Single photon avalanche diode based vision sensor with on-chip memristive spiking neuromorphic processing. In: Proceedings of 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS); 2020 Aug 9–12; Springfielf, MA, USA. New York: IEEE; 2020. p. 377–80.
[[31]]
Sayyaparaju S, Weiss R, Rose GS. A mixed-mode neuron with on-chip tunability for generic use in memristive neuromorphic systems. In: Proceedings of 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI); 2018 Jul 8–11; Hong Kong, China. New York: IEEE; 2018. p. 441–6.
AI Summary AI Mindmap
PDF(497 KB)

Accesses

Citations

Detail

Sections
Recommended

/