
Glycomedicine: The Current State of the Art
Wei Wang
Engineering ›› 2023, Vol. 26 ›› Issue (7) : 12-15.
Glycomedicine: The Current State of the Art
[1] |
Wang Y, Adua E, Russell A, Roberts P, Ge S, Zeng Q, et al. Glycomics and its application potential in precision medicine. In: Precision medicine in China. Washington, DC: American Association for the Advancement of Science; 2016. p. 36–9.
|
[2] |
Özdemir V, Arga KY, Aziz RK, Bayram M, Conley SN, Dandara C, et al. Digging deeper into precision/personalized medicine: cracking the sugar code, the third alphabet of life, and sociomateriality of the cell. OMICS 2020;24 (2):62–80.
|
[3] |
Hou H, Yang H, Liu P, Huang C, Wang M, Li Y, et al. Profile of immunoglobulin G N-glycome in COVID-19 patients: a case-control study. Front Immunol 2021;12:748566.
|
[4] |
Russell A, Wang W. The rapidly expanding nexus of immunoglobulin G Nglycomics, suboptimal health status, and precision medicine. Exp Suppl 2021;112:545–64.
|
[5] |
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KTBG, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32(10):1478–88.
|
[6] |
Zielinska DF, Gnad F, Wis´niewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 2010;141(5):897–907.
|
[7] |
Fournet M, Bonté F, Desmoulière A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis 2018;9(5):880–900.
|
[8] |
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNActransferase gene family. Glycobiology 2012;22(6):736–56.
|
[9] |
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: still ‘‘hot” in 2020. BBA-Gen Subjects 2021;1865 (1):129751.
|
[10] |
Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13(7):448–62.
|
[11] |
Hansen L, Husein DM, Gericke B, Hansen T, Pedersen O, Tambe MA, et al. A mutation map for human glycoside hydrolase genes. Glycobiology 2020;30 (8):500–15.
|
[12] |
Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021;184(12):3109–24.e22.
|
[13] |
Štambuk J, Nakic´ N, Vucˇkovic´ F, Pucˇic´ -Bakovic´ M, Razdorov G, Trbojevic´ - Akmacˇic´ I, et al. Global variability of the human IgG glycome. Aging 2020;12 (15):15222–59.
|
[14] |
Yu X, Wang Y, Kristic J, Dong J, Chu Xi, Ge S, et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine 2016;95(28):e4112.
|
[15] |
Vucˇkovic´ F, Krištic´ J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 2015;67(11):2978–89.
|
[16] |
Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 2012;134(29):12308–18.
|
[17] |
Pagan JD, KitaokaM, Anthony RM. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 2018;172(3):564–77.e13.
|
/
〈 |
|
〉 |