Spatial and Temporal Variations in the Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in China

Xiaodong Xie, Qi Ying, Hongliang Zhang, Jianlin Hu

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 117-129.

PDF(6688 KB)
PDF(6688 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 117-129. DOI: 10.1016/j.eng.2022.03.013
Research
Article

Spatial and Temporal Variations in the Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in China

Author information +
History +

Abstract

The aging timescale of particles is a key parameter in determining their impacts on air quality, human health, and climate. In this study, a one-year simulation of the age distributions of the primary and secondary inorganic fine particulate matter (PM2.5) components was conducted over China using an age-resolved Community Multiscale Air Quality (CMAQ) model. The results indicate that primary PM2.5 (PPM) and ammonium mainly originate from fresh local emissions, with approximately 60%-80% concentrated in 0-24 h age bins in most of China throughout the year. The average age is about 15-25 h in most regions in summer, but increases to 40-50 h in southern region of China and the Sichuan Basin (SCB) in winter. Sulfate is more aged than PPM, indicating an enhanced contribution from regional transport. Aged sulfate with atmospheric age > 48 h account for 30%-50% of total sulfate in most regions and seasons, and the concentrations in the > 96 h age bin can reach up to 15 µg·m−3 in SCB during winter. Dramatic seasonal variations occur in the Yangtze River Delta, Pearl River Delta, and SCB, with highest average age of 60-70 h in winter and lowest of 40-45 h in summer. The average age of nitrate is 20-30 h in summer and increases to 40-50 h in winter. The enhanced deposition rate of nitric acid vapor combined with the faster chemical reaction rate of nitrogen oxides leads to a lower atmospheric age in summer. Additionally, on pollution days, the contributions of old age bins (> 24 h) increase notably for both PPM and secondary inorganic aerosols in most cities and seasons, suggesting that regional transport plays a vital role during haze events. The age information of PM2.5, provided by the age-resolved CMAQ model, can help policymakers design effective emergent emission control measures to eliminate severe haze episodes.

Graphical abstract

Keywords

Atmospheric age / PM2.5 / CMAQ model / Control strategy

Cite this article

Download citation ▾
Xiaodong Xie, Qi Ying, Hongliang Zhang, Jianlin Hu. Spatial and Temporal Variations in the Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in China. Engineering, 2023, 28(9): 117‒129 https://doi.org/10.1016/j.eng.2022.03.013

References

[1]
A.J. Cohen, M. Brauer, R. Burnett, H.R. Anderson, J. Frostad, K. Estep, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389 (10082) (2017), pp. 1907-1918
[2]
The Intergovernmental Panel on Climate Change IPCC. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2021.
[3]
N. Riemer, A.P. Ault, M. West, R.L. Craig, J.H. Curtis. Aerosol mixing state: measurements, modeling, and impacts. Rev Geophys, 57 (2) (2019), pp. 187-249. DOI: 10.1029/2018rg000615
[4]
K.M. Wagstrom, S.N. Pandis. Determination of the age distribution of primary and secondary aerosol species using a chemical transport model. J Geophys Res Atmos, 114 (D14) (2009), p. D14303
[5]
R.J. Huang, Y. Zhang, C. Bozzetti, K.F. Ho, J.J. Cao, Y. Han, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514 (7521) (2014), pp. 218-222. DOI: 10.1038/nature13774
[6]
Y. Xie, H. Dai, H. Dong, T. Hanaoka, T. Masui. Economic impacts from PM2.5 pollution-related health effects in China: a provincial-level analysis. Environ Sci Technol, 50 (9) (2016), pp. 4836-4843. DOI: 10.1021/acs.est.5b05576
[7]
Q. Zhang, Y. Zheng, D. Tong, M. Shao, S. Wang, Y. Zhang, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc Natl Acad Sci USA, 116 (49) (2019), pp. 24463-24469. DOI: 10.1073/pnas.1907956116
[8]
Y.J. Li, Y. Sun, Q. Zhang, X. Li, M. Li, Z. Zhou, et al. Real-time chemical characterization of atmospheric particulate matter in China: a review. Atmos Environ, 158 (2017), pp. 270-304
[9]
Z. An, R.J. Huang, R. Zhang, X. Tie, G. Li, J. Cao, et al. Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes. Proc Natl Acad Sci USA, 116 (18) (2019), pp. 8657-8666. DOI: 10.1073/pnas.1900125116
[10]
J. Hu, L. Wu, B. Zheng, Q. Zhang, K. He, Q. Chang, et al. Source contributions and regional transport of primary particulate matter in China. Environ Pollut, 207 (2015), pp. 31-42
[11]
Y. Zhu, L. Huang, J. Li, Q. Ying, H. Zhang, X. Liu, et al. Sources of particulate matter in China: insights from source apportionment studies published in 1987-2017. Environ Int, 115 (2018), pp. 343-357
[12]
Li L, Hu J, Li J, Gong K, Wang X, Ying Q, et al. Modelling air quality during the EXPLORE-YRD campaign—part II. Regional source apportionment of ozone and PM2.5. Atmos Environ 2021; 247:118063.
[13]
Z. Shi, J. Li, L. Huang, P. Wang, L. Wu, Q. Ying, et al. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Sci Total Environ, 601-602 (2017), pp. 1476-1487
[14]
Gong K, Li L, Li J, Qin M, Wang X, Ying Q, et al. Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: implications for regional cooperative controls of PM2.5 and O3. Sci Total Environ 2021; 779:146619.
[15]
J.B. Wu, Z. Wang, Q. Wang, J. Li, J. Xu, H. Chen, et al. Development of an on-line source-tagged model for sulfate, nitrate and ammonium: a modeling study for highly polluted periods in Shanghai. China Environ Pollut, 221 (2017), pp. 168-179
[16]
J.M. Roberts, F.C. Fehsenfeld, S.C. Liu, M.J. Bollinger, C. Hahn, D.L. Albritton, et al. Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: observation of air mass photochemical aging and NOx removal. Atmos Environ, 18 (11) (1984), pp. 2421-2432
[17]
D.D. Parrish, C.J. Hahn, E.J. Williams, R.B. Norton, F.C. Fehsenfeld, H.B. Singh, et al. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena. California J Geophys Res Atmos, 97 (D14) (1992), pp. 15883-15901
[18]
S. Irei, A. Takami, Y. Sadanaga, S. Nozoe, S. Yonemura, H. Bandow, et al. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki. Japan Atmos Chem Phys, 16 (7) (2016), pp. 4555-4568. DOI: 10.5194/acp-16-4555-2016
[19]
L.I. Kleinman, P.H. Daum, Y.N. Lee, L.J. Nunnermacker, S.R. Springston, J. Weinstein-Lloyd, et al. Photochemical age determinations in the Phoenix metropolitan area. J Geophys Res Atmos, 108 (D3) (2003), p. 4096
[20]
J.C. Doran, J.D. Fast, J.C. Barnard, A. Laskin, Y. Desyaterik, M.K. Gilles. Applications of lagrangian dispersion modeling to the analysis of changes in the specific absorption of elemental carbon. Atmos Chem Phys, 8 (5) (2008), pp. 1377-1389. DOI: 10.5194/acp-8-1377-2008
[21]
D.D. Parrish, A. Stohl, C. Forster, E.L. Atlas, D.R. Blake, P.D. Goldan, et al. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J Geophys Res Atmos, 112 (D10) (2007), p. D10S34
[22]
Q. Han, C.S. Zender. Desert dust aerosol age characterized by mass-age tracking of tracers. J Geophys Res Atmos, 115 (D22) (2010), p. D22201
[23]
Q. Ying, J. Zhang, H. Zhang, J. Hu, M.J. Kleeman. Atmospheric age distribution of primary and secondary inorganic aerosols in a polluted atmosphere. Environ Sci Technol, 55 (9) (2021), pp. 5668-5676. DOI: 10.1021/acs.est.0c07334
[24]
Xie X, Shi Z, Ying Q, Zhang H, Hu J. Age-resolved source and region contributions to fine particulate matter during an extreme haze episode in China. Geophys Res Lett 2021;48(21): e2021GL095388.
[25]
Q. Chen, T.M. Fu, J. Hu, Q. Ying, L. Zhang. Modelling secondary organic aerosols in China. Natl Sci Rev, 4 (6) (2017), pp. 806-809. DOI: 10.1093/nsr/nwx143
[26]
Byun DW, Ching JKS. Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Washington, DC: US Environmental Protection Agency. 1999 Jun 29. Report No.: EPA/600/R-99/030 (NTIS PB2000-100561).
[27]
H. Guo, S.H. Kota, S.K. Sahu, J. Hu, Q. Ying, A. Gao, et al. Source apportionment of PM2.5 in North India using source-oriented air quality models. Environ Pollut, 231 (Pt 1) (2017), pp. 426-436
[28]
J. Wang, J. Xing, R. Mathur, J.E. Pleim, S. Wang, C. Hogrefe, et al. Historical trends in PM2.5-related premature mortality during 1990-2010 across the Northern Hemisphere. Environ Health Perspect, 125 (3) (2017), pp. 400-408. DOI: 10.1289/ehp298
[29]
C. Hogrefe, P. Liu, G. Pouliot, R. Mathur, S. Roselle, J. Flemming, et al. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States. Atmos Chem Phys, 18 (5) (2018), pp. 3839-3864. DOI: 10.5194/acp-18-3839-2018
[30]
J. Hu, J. Chen, Q. Ying, H. Zhang. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys, 16 (16) (2016), pp. 10333-10350. DOI: 10.5194/acp-16-10333-2016
[31]
L.T. Wang, Z. Wei, J. Yang, Y. Zhang, F.F. Zhang, J. Su, et al. The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmos Chem Phys, 14 (6) (2014), pp. 3151-3173. DOI: 10.5194/acp-14-3151-2014
[32]
J. Cheng, J. Su, T. Cui, X. Li, X. Dong, F. Sun, et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017: a model-based decomposition analysis. Atmos Chem Phys, 19 (9) (2019), pp. 6125-6146. DOI: 10.5194/acp-19-6125-2019
[33]
Wang C, Wang Y, Shi Z, Sun J, Gong K, Li J, et al. Effects of using different exposure data to estimate changes in premature mortality attributable to PM2.5 and O3 in China. Environ Pollut 2021; 285:117242.
[34]
Q. Ying, L. Wu, H. Zhang. Local and inter-regional contributions to PM2.5 nitrate and sulfate in China. Atmos Environ, 94 (2014), pp. 582-592
[35]
X. Qiao, Q. Ying, X. Li, H. Zhang, J. Hu, Y. Tang, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model. Sci Total Environ, 612 (2018), pp. 462-471
[36]
Q. Ying, J. Li, S.H. Kota. Significant contributions of isoprene to summertime secondary organic aerosol in eastern United States. Environ Sci Technol, 49 (13) (2015), pp. 7834-7872. DOI: 10.1021/acs.est.5b02514
[37]
J. Hu, P. Wang, Q. Ying, H. Zhang, J. Chen, X. Ge, et al. Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmos Chem Phys, 17 (1) (2017), pp. 77-92. DOI: 10.5194/acp-17-77-2017
[38]
J. Li, H. Zhang, Q. Ying, Z. Wu, Y. Zhang, X. Wang, et al. Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmos Chem Phys, 20 (12) (2020), pp. 7291-7306. DOI: 10.5194/acp-20-7291-2020
[39]
H. Zhang, J. Li, Q. Ying, J.Z. Yu, D. Wu, Y. Cheng, et al. Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmos Environ, 62 (2012), pp. 228-242
[40]
B. Zheng, D. Tong, M. Li, F. Liu, C. Hong, G. Geng, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys, 18 (19) (2018), pp. 14095-14111. DOI: 10.5194/acp-18-14095-2018
[41]
J. Kurokawa, T. Ohara. Long-term historical trends in air pollutant emissions in Asia: regional emission inventory in Asia (REAS) version 3. Atmos Chem Phys, 20 (21) (2020), pp. 12761-12793. DOI: 10.5194/acp-20-12761-2020
[42]
A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, C. Geron. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys, 6 (11) (2006), pp. 3181-3210. DOI: 10.5194/acp-6-3181-2006
[43]
C. Wiedinmyer, S.K. Akagi, R.J. Yokelson, L.K. Emmons, J.A. Al-Saadi, J.J. Orlando, et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev, 4 (3) (2011), pp. 625-641. DOI: 10.5194/gmd-4-625-2011
[44]
H. Zhang, H. Guo, J. Hu, Q. Ying, M.J. Kleeman. Modeling Atmospheric age distribution of elemental carbon using a regional age-resolved particle representation framework. Environ Sci Technol, 53 (1) (2019), pp. 270-278
[45]
S. Zhai, D.J. Jacob, X. Wang, Z. Liu, T. Wen, V. Shah, et al. Control of particulate nitrate air pollution in China. Nat Geosci, 14 (6) (2021), pp. 389-395. DOI: 10.1038/s41561-021-00726-z
[46]
Z. Liu, W. Gao, Y. Yu, B. Hu, J. Xin, Y. Sun, et al. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmos Chem Phys, 18 (12) (2018), pp. 8849-8871. DOI: 10.5194/acp-18-8849-2018
[47]
J. Xin, Y. Wang, Y. Pan, D. Ji, Z. Liu, T. Wen, et al. The campaign on atmospheric aerosol research network of China: CARE-China. Bull Am Meteorol Soc, 96 (7) (2015), pp. 1137-1155
[48]
C. Emery, Z. Liu, A.G. Russell, M.T. Odman, G. Yarwood, N. Kumar. Recommendations on statistics and benchmarks to assess photochemical model performance. J Air Waste Manag Assoc, 67 (5) (2017), pp. 582-598. DOI: 10.1080/10962247.2016.1265027
[49]
Emery C, Tai E, Yarwood G. Enhanced meteorological modeling and performance evaluation for two texas ozone episodes. Report. Novato, CA: Environmental International Corporation; 2001.
[50]
Wang P, Cao JJ, Shen ZX, Han YM, Lee SC, Huang Y, et al. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an, China. Sci Total Environ 2015; 508:477-87.
[51]
Y.L. Sun, Z.F. Wang, W. Du, Q. Zhang, Q.Q. Wang, P.Q. Fu, et al. Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmos Chem Phys, 15 (17) (2015), pp. 10149-10165. DOI: 10.5194/acp-15-10149-2015
[52]
X. Qiao, H. Guo, P. Wang, Y. Tang, Q. Ying, X. Zhao, et al. Fine particulate matter and ozone pollution in the 18 cities of the Sichuan Basin in southwestern China: model performance and characteristics. Aerosol Air Qual Res, 19 (10) (2019), pp. 2308-2319. DOI: 10.4209/aaqr.2019.05.0235
[53]
M. Hallquist, J.C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys, 9 (14) (2009), pp. 5155-5236. DOI: 10.5194/acp-9-5155-2009
[54]
X. Chen, Z. Wang, F. Yu, X. Pan, J. Li, B. Ge, et al. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model. Atmos Environ, 163 (2017), pp. 44-56. DOI: 10.3390/min7030044
[55]
K. Huang, J.S. Fu, N.C. Hsu, Y. Gao, X. Dong, S.C. Tsay, et al. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos Environ, 78 (2013), pp. 291-302
[56]
X. Long, X. Tie, J. Cao, R. Huang, T. Feng, N. Li, et al. Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study. Atmos Chem Phys, 16 (15) (2016), pp. 9675-9691. DOI: 10.5194/acp-16-9675-2016
[57]
M. Li, Q. Zhang, J.I. Kurokawa, J.H. Woo, K. He, Z. Lu, et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys, 17 (2) (2017), pp. 935-963. DOI: 10.5194/acp-17-935-2017
[58]
G.J. Zheng, F.K. Duan, H. Su, Y.L. Ma, Y. Cheng, B. Zheng, et al. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmos Chem Phys, 15 (6) (2015), pp. 2969-2983. DOI: 10.5194/acp-15-2969-2015
[59]
J. Zhu, S. Wang, H. Wang, S. Jing, S. Lou, A. Saiz-Lopez, et al. Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmos Chem Phys, 20 (3) (2020), pp. 1217-1232. DOI: 10.5194/acp-20-1217-2020
[60]
D. Ji, W. Gao, J. Zhang, Y. Morino, L. Zhou, P. Yu, et al. Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Sci Total Environ, 572 (2016), pp. 289-300
[61]
C. Lee, R.V. Martin, A. van Donkelaar, H. Lee, R.R. Dickerson, J.C. Hains, et al. SO2 emissions and lifetimes: estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. J Geophys Res Atmos, 116 (D6) (2011), p. D06304
[62]
V. Shah, D.J. Jacob, K. Li, R.F. Silvern, S. Zhai, M. Liu, et al. Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmos Chem Phys, 20 (3) (2020), pp. 1483-1495. DOI: 10.5194/acp-20-1483-2020
[63]
E.V. Fischer, D.J. Jacob, R.M. Yantosca, M.P. Sulprizio, D.B. Millet, J. Mao, et al. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmos Chem Phys, 14 (5) (2014), pp. 2679-2698. DOI: 10.5194/acp-14-2679-2014
[64]
R.W. Pinder, R.L. Dennis, P.V. Bhave. Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions—part I: derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos Environ, 42 (6) (2008), pp. 1275-1286
[65]
M. Liu, X. Huang, Y. Song, J. Tang, J. Cao, X. Zhang, et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc Natl Acad Sci USA, 116 (16) (2019), pp. 7760-7765. DOI: 10.1073/pnas.1814880116
[66]
Leung DM, Shi H, Zhao B, Wang J, Ding EM, Gu Y, et al. Wintertime particulate matter decrease buffered by unfavorable chemical processes despite emissions reductions in China. Geophys Res Lett 2020;47(14): e2020GL087721.
[67]
A. Nenes, S.N. Pandis, M. Kanakidou, A.G. Russell, S. Song, P. Vasilakos, et al. Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmos Chem Phys, 21 (8) (2021), pp. 6023-6033. DOI: 10.5194/acp-21-6023-2021
[68]
E. Dammers, C.A. McLinden, D. Griffin, M.W. Shephard, S. Van Der Graaf, E. Lutsch, et al. NH3 emissions from large point sources derived from CrIS and IASI satellite observations. Atmos Chem Phys, 19 (19) (2019), pp. 12261-12293. DOI: 10.5194/acp-19-12261-2019
[69]
X. Huang, A. Ding, Z. Wang, K. Ding, J. Gao, F. Chai, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nat Geosci, 13 (6) (2020), pp. 428-434. DOI: 10.1038/s41561-020-0583-4
[70]
Y.B. Lim, J. Seo, J.Y. Kim, Y.P. Kim, H.C. Jin. Local formation of sulfates contributes to the urban haze with regional transport origin. Environ Res Lett, 15 (8) (2020), Article 084034. DOI: 10.1088/1748-9326/ab83aa
[71]
X. Huang, A. Ding, J. Gao, B. Zheng, D. Zhou, X. Qi, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev, 8 (2) (2020), p. nwaa137
[72]
M. Li, Z. Zhang, Q. Yao, T. Wang, M. Xie, S. Li, et al. Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China. Atmos Chem Phys, 21 (19) (2021), pp. 15135-15152. DOI: 10.5194/acp-21-15135-2021
[73]
M. Kang, J. Zhang, H. Zhang, Q. Ying. On the relevancy of observed ozone increase during COVID-19 lockdown to summertime ozone and PM2.5 control policies in China. Environ Sci Technol Lett, 8 (4) (2021), pp. 289-294. DOI: 10.1021/acs.estlett.1c00036
[74]
S. Wang, J. Xing, C. Jang, Y. Zhu, J.S. Fu, J. Hao. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ Sci Technol, 45 (21) (2011), pp. 9293-9300. DOI: 10.1021/es2022347
[75]
Z. Liu, M. Zhou, Y. Chen, D. Chen, Y. Pan, T. Song, et al. The nonlinear response of fine particulate matter pollution to ammonia emission reductions in north China. Environ Res Lett, 16 (2021), Article 034014
AI Summary AI Mindmap
PDF(6688 KB)

Accesses

Citations

Detail

Sections
Recommended

/