
A Planar 4-Bit Reconfigurable Antenna Array Based on the Design Philosophy of Information Metasurfaces
Zheng Xing Wang, Hanqing Yang, Ruiwen Shao, Jun Wei Wu, Guobiao Liu, Feng Zhai, Qiang Cheng, Tie Jun Cui
Engineering ›› 2022, Vol. 17 ›› Issue (10) : 64-74.
A Planar 4-Bit Reconfigurable Antenna Array Based on the Design Philosophy of Information Metasurfaces
Inspired by the design philosophy of information metasurfaces based on the digital coding concept, a planar 4-bit reconfigurable antenna array with low profile of 0.15 λ0 (where λ0 is the wavelength) is presented. The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric (ME) dipole and a miniaturized reflection-type phase shifter (RTPS). The proposed 1-bit ME dipole can provide two digital states of “0” and “1” (with 0° and 180° phase responses) over a wide frequency band by individually exciting its two symmetrical feeding ports. The designed RTPS is able to realize a relative phase shift of 173°. By digitally quantizing its phase in the range of 157.5°, additional eight digital states at intervals of 22.5° are obtained. To achieve low sidelobe levels, a 1:16 power divider based on the Taylor line source method is employed to feed the array. A prototype of the proposed 4-bit antenna array has been fabricated and tested, and the experimental results are in good agreement with the simulations. Scanning beams within a ±45° range were measured with a maximum realized gain of 13.4 dBi at 12 GHz. The sidelobe and cross-polarization levels are below –14.3 and –23 dB, respectively. Furthermore, the beam pointing error is within 0.8°, and the 3-dB gain bandwidth of the broadside beam is 25%. Due to its outstanding performance, the array holds potential for significant applications in radar and wireless communication systems.
4-Bit reconfigurable antenna array / Information metasurface / Digital coding method / Low sidelobe / Low profile
[1] |
Mailloux RJ. Phased array antenna handbook. 3rd ed. Norwood: Artech House; 2018.
|
[2] |
Stutzman WL, Thiele GA. Antenna theory and design. 3rd ed. Hoboken: John Wiley & Sons, Inc.; 2013.
|
[3] |
Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 2020;1(1):1.
|
[4] |
Cui TJ, Li L, Liu S, Ma Q, Zhang L, Wan X, et al. Information metamaterial systems. iScience 2020;23(8):101403.
|
[5] |
Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218.
|
[6] |
Wang ZX, Wu JW, Wu LW, Gou Y, Ma HF, Cheng Q, et al. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv Opt Mater 2021;9(5):2001609.
|
[7] |
Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018;9(1):4334.
|
[8] |
Dai JY, Zhao J, Cheng Q, Cui TJ. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl 2018;7(1):90.
|
[9] |
Ma Q, Bai GD, Jing HB, Yang C, Li L, Cui TJ. Smart metasurface with selfadaptively reprogrammable functions. Light Sci Appl 2019;8(1):98.
|
[10] |
Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8(1):197.
|
[11] |
Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082.
|
[12] |
Wu JB, Shen Z, Ge SJ, Chen BW, Shen ZX, Wang TF, et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett 2020;116(13):131104.
|
[13] |
Zhao J, Yang X, Dai JY, Cheng Q, Li X, Qi NH, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev 2019;6(2):231–8.
|
[14] |
Cui TJ, Liu S, Bai GD, Ma Q. Direct transmission of digital message via programmable coding metasurface. Research 2019;2019:2584509.
|
[15] |
Zhang L, Chen MZ, Tang W, Dai JY, Miao L, Zhou XY, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electron 2021;4(3):218–27.
|
[16] |
Chen MZ, Tang WK, Dai JY, Ke JC, Zhang L, Zhang C, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl Sci Rev 2022;9(1):nwab134.
|
[17] |
Yang HH, Yang F, Xu SH, Mao YL, Li MK, Cao XY, et al. A 1-bit 10 10 reconfigurable reflectarray antenna: design, optimization, and experiment. IEEE Trans Antenn Propag 2016;64(6):2246–54.
|
[18] |
Yang HH, Yang F, Cao XY, Xu SH, Gao J, Chen XB, et al. A 1600-element dualfrequency electronically reconfigurable reflectarray at X/Ku-band. IEEE Trans Antenn Propag 2017;65(6):3024–32.
|
[19] |
Di Palma L, Clemente A, Dussopt L, Sauleau R, Potier P, Pouliguen P. Circularlypolarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities. IEEE Trans Antenn Propag 2017;65(2):529–40.
|
[20] |
Wang M, Xu SH, Yang F, Li MK. Design and measurement of a 1-bit reconfigurable transmitarray with subwavelength H-shaped coupling slot elements. IEEE Trans Antenn Propag 2019;67(5):3500–4.
|
[21] |
Wang Y, Xu SH, Yang F, Li MK. A novel 1 bit wide-angle beam scanning reconfigurable transmitarray antenna using an equivalent magnetic dipole element. IEEE Trans Antenn Propag 2020;68(7):5691–5.
|
[22] |
Hu J, Hao ZC, Wang Y. A wideband array antenna with 1-bit digitalcontrollable radiation beams. IEEE Access 2018;6:10858–66.
|
[23] |
Wang Q, Tian HW, Jiang WX, Chen MZ, Zhang XG, Cui TJ. An ultrawideband and dual-beam scanning array antenna charactered by coding method. IEEE Antennas Wirel Propag Lett 2020;19(12):2211–5.
|
[24] |
Zhang XG, Jiang WX, Tian HW, Wang ZX, Wang Q, Cui TJ. Patternreconfigurable planar array antenna characterized by digital coding method. IEEE Trans Antenn Propag 2020;68(2):1170–5.
|
[25] |
Chang L, Li Y, Zhang ZJ, Feng ZH. Reconfigurable 2-bit fixed-frequency beam steering array based on microstrip line. IEEE Trans Antenn Propag 2018;66 (2):683–91.
|
[26] |
Liu PQ, Li Y, Zhang ZJ. Circularly polarized 2 bit reconfigurable beam-steering antenna array. IEEE Trans Antenn Propag 2020;68(3):2416–21.
|
[27] |
Smith M, Guo Y. A comparison of methods for randomizing phase quantization errors in phased arrays. IEEE Trans Antenn Propag 1983;31(6):821–8.
|
[28] |
Jiang W, Guo YC, Liu TH, Shen WF, Cao W. Comparison of random phasing methods for reducing beam pointing errors in phased array. IEEE Trans Antenn Propag 2003;51(4):782–7.
|
[29] |
Luk KM, Wong H. A new wideband unidirectional antenna element. Int J Microw Opt Technol 2006;1(1):35–44.
|
[30] |
Luk KM, Wu BQ. The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc IEEE 2012;100(7):2297–307.
|
[31] |
Balanis CA, editor. Modern antenna handbook. Hoboken: John Wiley & Sons, Inc.; 2008
|
[32] |
Huang J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans Antenn Propag 1986;34 (9):1113–24.
|
[33] |
Hall PS, Dahele JS, James JR. Design principles of sequentially fed, wide bandwidth, circularly polarized microstrip antennas. IEE Proc H 1989;136(5):381–9.
|
[34] |
Hu J, Hao ZC. A compact polarization-reconfigurable and 2-D beam-switchable antenna using the spatial phase shift technique. IEEE Trans Antenn Propag 2018;66(10):4986–95.
|
[35] |
Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118(11):113901.
|
[36] |
Burdin F, Iskandar Z, Podevin F, Ferrari P. Design of compact reflection-type phase shifters with high figure-of-merit. IEEE Trans Microw Theory Tech 2015;63(6):1883–93.
|
[37] |
Singh A, Mandal MK. Electronically tunable reflection type phase shifters. IEEE Trans Circuits Syst II 2020;67(3):425–9.
|
[38] |
MADP-000907-14020W [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.macom.com/products/product-detail/MADP000907-14020W.
|
[39] |
Discover Simulia [Internet]. Paris: Dassault Systèmes; [cited 2021 Jul 9]. Available from: https://www.cst.com/products/cstmws.
|
[40] |
Sun J, Li A, Luk KM. A high-gain millimeter-wave magnetoelectric dipole array with packaged microstrip line feed network. IEEE Antennas Wirel Propag Lett 2020;19(10):1669–73.
|
[41] |
MAVR-011020-1411 [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.macom.com/products/product-detail/MAVR011020-1411.
|
[42] |
Pozar DM. Microwave engineering. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2012.
|
/
〈 |
|
〉 |