Foundations and Applications of Information Systems Dynamics

Jianfeng Xu, Zhenyu Liu, Shuliang Wang, Tao Zheng, Yashi Wang, Yingfei Wang, Yingxu Dang

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 254-265.

PDF(2287 KB)
PDF(2287 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 254-265. DOI: 10.1016/j.eng.2022.04.018
Research
Article

Foundations and Applications of Information Systems Dynamics

Author information +
History +

Abstract

Although numerous advances have been made in information technology in the past decades, there is still a lack of progress in information systems dynamics (ISD), owing to the lack of a mathematical foundation needed to describe information and the lack of an analytical framework to evaluate information systems. The value of ISD lies in its ability to guide the design, development, application, and evaluation of large-scale information system-of-systems (SoSs), just as mechanical dynamics theories guide mechanical systems engineering. This paper reports on a breakthrough in these fundamental challenges by proposing a framework for information space, improving a mathematical theory for information measurement, and proposing a dynamic configuration model for information systems. In this way, it establishes a basic theoretical framework for ISD. The proposed theoretical methodologies have been successfully applied and verified in the Smart Court SoSs Engineering Project of China and have achieved significant improvements in the quality and efficiency of Chinese court informatization. The proposed ISD provides an innovative paradigm for the analysis, design, development, and evaluation of large-scale complex information systems, such as electronic government and smart cities.

Graphical abstract

Keywords

System-of-systems engineering / Information theory / Information measurement / Information systems dynamics / Judicial informatization

Cite this article

Download citation ▾
Jianfeng Xu, Zhenyu Liu, Shuliang Wang, Tao Zheng, Yashi Wang, Yingfei Wang, Yingxu Dang. Foundations and Applications of Information Systems Dynamics. Engineering, 2023, 27(8): 254‒265 https://doi.org/10.1016/j.eng.2022.04.018

References

[1]
J. Gleick. The information: a history, a theory, a flood. Vintage, New York City (2011)
[2]
L. Guo. Estimation, control, and games of dynamical systems with uncertainty. Sci Sin Inf, 50 (9) (2020), pp. 1327-1344. [Chinese]. DOI: 10.1360/ssi-2020-0277
[3]
H. Atmanspacher, H. Scheingraber, Information dynamics. Springer Science & Business Media, New York City (1991)
[4]
R.S. Ingarden, A. Kossakowski, M. Ohya. Information dynamics and open system:classical and quantum approach. Springer Science & Business Media, Dordrecht (1997)
[5]
G. Deco, B. Schürmann. Information dynamics: foundations and applications. Springer, New York City (2001)
[6]
B. Yan. [Introduction to information dynamics]. Beijing University of Posts and Telecommunications Press, Beijing (2014). [Chinese].
[7]
A. Flory, J. Kouloumdjian. A model for the description of the information system dynamics. Proceedings of 2nd Conference of the European Cooperation in Informatics: Information Systems Methodology; 1978 Oct 10-12; Venice, Italy, Springer-Verlag, Berlin(1978), pp. 307-318. DOI: 10.1007/3-540-08934-9_85
[8]
A. Bounfour, S. Batra. Information system dynamics: an international research programme. Paradigm, 13 (2) (2009), pp. 64-68. DOI: 10.1177/0971890720090209
[9]
X.S. Yan. [Information science:concept, system and prospect]. Science Press, Beijing (2016). [Chinese].
[10]
L. Von Bertalanffy. The history and status of general systems theory. Acad Manag J, 15 (4) (1972), pp. 407-426
[11]
C.E. Shannon. A mathematical theory of communication. Bell Syst Tech J, 27 (3) (1948), pp. 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x
[12]
X.S. Yan. Information science: its past, present and future. Information, 2 (3) (2011), pp. 510-527. DOI: 10.3390/info2030510
[13]
A.S. Zaliwski. Information—is it subjective or objective?. tripleC, 9 (1) (2011), pp. 77-92.
[14]
M. Rao, Y. Chen, B.C. Vemuri, F. Wang. Cumulative residual entropy: a new measure of information. IEEE Trans Inf Theory, 50 (6) (2004), pp. 1220-1228.
[15]
M. Madiman, P. Tetali. Information inequalities for joint distributions, with interpretations and applications. IEEE Trans Inf Theory, 56 (6) (2010), pp. 2699-2713.
[16]
X. Chen, W. Dai. Maximum entropy principle for uncertain variables. Int J Fuzzy Syst, 13 (3) (2011), pp. 232-236.
[17]
L. Von Bertalanffy. General system theory: foundations, development, applications. George Braziller, New York City (1968)
[18]
B. Efron. Defining the curvature of a statistical problem (with applications to second order efficiency). Ann Stat, 3 (6) (1975), pp. 1189-1242
[19]
S. Amari, H. Nagaoka. Methods of information geometry. Oxford University Press, New York City (2000)
[20]
R. Vigo. Representational information: a new general notion and measure of information. Inf Sci, 181 (21) (2011), pp. 4847-4859.
[21]
C.R. Rao. Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc, 37 (3) (1945), pp. 81-91
[22]
H.L. Meriam. Engineering mechanics: dynamics. (8th ed.), Wiley, New York City (2015)
[23]
M.R. Wright, P.G. Wright. Inter-relations of activation, deactivation and destruction steps in chemical kinetics. Nature, 210 (5041) (1966), pp. 1110-1113. DOI: 10.1038/2101110a0
[24]
R. Shone. An introduction to economic dynamics. Cambridge University Press, Cambridge (2001)
[25]
J.F. Xu, J. Tang, X.F. Ma, B. Xu, Y.L. Shen, Y.J. Qiao. Research on metrics and models for objective information. Sci Sin Inf, 45 (3) (2015), pp. 336-353. [Chinese]. DOI: 10.1360/N112014-00040
[26]
J. Xu, S. Wang, Z. Liu, Y. Wang. Objective information theory exemplified in air traffic control system. Chin J Electron, 30 (4) (2021), pp. 743-751. DOI: 10.1109/icra48506.2021.9562045
[27]
B.M. Leiner, V.G. Cerf, D.D. Clark, R.E. Kahn, L. Kleinrock, D.C. Lynch, et al. A brief history of the internet. ACM Sigcomm Comput Commun Rev, 39 (5) (2009), pp. 22-31. DOI: 10.1145/1629607.1629613
[28]
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella. On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutor, 19 (3) (2017), pp. 1657-1681.
[29]
S. Madakam, R. Ramaswamy, S. Tripathi. Internet of Things (IoT): a literature review. J Comput Commun, 3 (5) (2015), pp. 164-173. DOI: 10.4236/jcc.2015.35021
[30]
D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, et al. Detecting novel associations in large data sets. Science, 334 (6062) (2011), pp. 1518-1524. DOI: 10.1126/science.1205438
[31]
C. Liu, K. Li, K. Li. A game approach to multi-servers load balancing with load-dependent server availability consideration. IEEE Trans Cloud Comput, 9 (1) (2021), pp. 1-13
[32]
J. Hu, K. Li, C. Liu, K. Li. A game-based price bidding algorithm for multi-attribute cloud resource provision. IEEE Trans Serv Comput, 14 (4) (2021), pp. 1111-1122. DOI: 10.1109/tsc.2018.2860022
[33]
Y. Xu, K. Li, J. Hu, K. Li. A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf Sci, 270 (2014), pp. 255-287.
[34]
Y. Chen, K. Li, W. Yang, G. Xiao, X. Xie, T. Li. Performance-aware model for sparse matrix-matrix multiplication on the sunway TaihuLight supercomputer. IEEE Trans Parallel Distrib Syst, 30 (4) (2019), pp. 923-938. DOI: 10.1109/tpds.2018.2871189
[35]
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444. DOI: 10.1038/nature14539
[36]
H. Huang, W. Kong, S. Zhou, Z. Zheng, S. Guo. A survey of state-of-the-art on blockchains: theories, modelings, and tools. ACM Comput Surv, 54 (2) (2022), pp. 1-42
[37]
Lee LH, Braud T, Zhou P, Wang L, Xu D, Lin Z, et al. All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda. 2021. arXiv:2110.05352.
[38]
N. Wiener. Cybernetics or control and communication in the animal and the machine. (2nd ed.), The MIT Press, Cambridge (1961)
[39]
K.R. Popper. Objective knowledge:an evolutionary approach. Oxford University Press, New York City (1972)
[40]
M.I. Skolnik. Radar handbook. (2nd ed.), McGraw-Hill, New York City (1990)
[41]
L. Rayleigh. LVI. Investigations in optics, with special reference to the spectroscope. Philos Mag, 8 (51) (1879), pp. 477-486. DOI: 10.1080/14786447908639715
[42]
J. Lienig, H. Bruemmer. Reliability analysis. J. Lienig, H. Bruemmer (Eds.), Fundamentals of electronic systems design, Springer International Publishing, Cham (2017), pp. 45-73. DOI: 10.1007/978-3-319-55840-0_4
[43]
H. Nyquist. Certain topics in telegraph transmission theory. Proc IEEE, 90 (2) (1928), pp. 280-305
[44]
C. Shapiro, H.R. Varian. Information rules:a strategic guide to the network economy. Harvard Business School Press, Boston (1998)
[45]
R.E. Kalman. A new approach to linear filtering and prediction problems. J Basic Eng, 82 (1) (1960), pp. 35-45. DOI: 10.1115/1.3662552
[46]
I. Flores, G. Madpis. Average binary search length for dense ordered lists. Commun ACM, 14 (9) (1971), pp. 602-603.
[47]
Susskind R. China as the next leader in legal technology? [Internet]. Bristol: Society for Computers and Law; 2017 Aug 12 [cited 2022 Apr 2]. Available from: https://www.scl.org/articles/9979-china-as-the-next-leader-in-legal-technology.
[48]
J.F. Xu, F. Sun, Q. Chen. [Introduction to smart court system engineering]. People's Court Press, Beijing (2021). [Chinese].
PDF(2287 KB)

Accesses

Citations

Detail

Sections
Recommended

/