
Perspective: Acoustic Metamaterials in Future Engineering
Qiangbing Lu, Xin Li, Xiujuan Zhang, Minghui Lu, Yanfeng Chen
Perspective: Acoustic Metamaterials in Future Engineering
Acoustic metamaterials (AMMs) are a type of artificial materials that make use of appropriate structural designs and exhibit exotic properties not found in natural materials, such as negative effective material parameters (e.g., bulk modulus, mass density, and refractive index). These interesting properties offer novel means for sound manipulation and thus have drawn a great deal of attention. Over the past two decades, tremendous progress has been made in the fundamental research of AMMs, which has not only promoted the development of modern acoustics but also shown the potential of AMMs for engineering applications. Here, we review recent developments in AMMs with a focus on their future engineering, especially in the most promising fields of sound absorption/isolation, acoustic imaging, cloaking, and so on, furthermore, we outline the opportunities and challenges they are encountering.
Acoustic metamaterials / Sound absorption/isolation / Acoustic imaging / Engineering application
[[1]] |
Kinsler LE, Frey AR, Coppens AB, Sanders JV. Fundamentals of acoustics. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2000.
|
[[2]] |
Schriemer HP, Cowan ML, Page JH, Sheng P, Liu Z, Weitz DA. Energy velocity of diffusing waves in strongly scattering media. Phys Rev Lett 1997;79 (17):3166–9.
|
[[3]] |
Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B. Acoustic band structure of periodic elastic composites. Phys Rev Lett 1993;71(13):2022–5.
|
[[4]] |
Sigalas M, Economou EN. Band structure of elastic waves in two dimensional systems. Solid State Commun 1993;86(3):141–3.
|
[[5]] |
Martínez-Sala R, Sancho J, Sánchez JV, Gómez V, Llinares J, Meseguer F. Sound attenuation by sculpture. Nature 1995;378(6554):241.
|
[[6]] |
Yang S, Page JH, Liu Z, Cowan ML, Chan CT, Sheng P. Focusing of sound in a 3D phononic crystal. Phys Rev Lett 2004;93(2):024301.
|
[[7]] |
Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, et al. Negative-refraction imaging with two-dimensional phononic crystals. Phys Rev B 2005;72(6):064306.
|
[[8]] |
Lu MH, Liu XK, Feng L, Li J, Huang CP, Chen YF, et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys Rev Lett 2007;99(17):174301.
|
[[9]] |
Qiu C, Liu Z. Acoustic directional radiation and enhancement caused by bandedge states of two-dimensional phononic crystals. Appl Phys Lett 2006;89 (6):063106.
|
[[10]] |
Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, et al. Locally resonant sonic materials. Science 2000;289(5485):1734–6.
|
[[11]] |
Ho KM, Cheng CK, Yang Z, Zhang XX, Sheng P. Broadband locally resonant sonic shields. Appl Phys Lett 2003;83(26):5566–8.
|
[[12]] |
Sainidou R, Djafari-Rouhani B, Pennec Y, Vasseur JO. Locally resonant phononic crystals made of hollow spheres or cylinders. Phys Rev B 2006;73 (2):024302.
|
[[13]] |
Yang M, Sheng P. Sound absorption structures: from porous media to acoustic metamaterials. Annu Rev Mater Res 2017;47(1):83–114.
|
[[14]] |
Farhat M, Enoch S, Guenneau S, Movchan AB. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys Rev Lett 2008;101(13):134501.
|
[[15]] |
Torrent D, Sánchez-Dehesa J. Acoustic cloaking in two dimensions: a feasible approach. New J Phys 2008;10(6):063015.
|
[[16]] |
Zhang S, Yin L, Fang N. Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett 2009;102(19):194301.
|
[[17]] |
Li Y, Yu G, Liang B, Zou X, Li G, Cheng S, et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci Rep 2014;4(1):6830.
|
[[18]] |
Lee SH, Park CM, Seo YM, Kim CK. Reversed Doppler effect in double negative metamaterials. Phys Rev B 2010;81(24):241102.
|
[[19]] |
Li Y, Jiang X, Liang B, Cheng J, Zhang L. Metascreen-based acoustic passive phased array. Phys Rev Appl 2015;4(2):024003.
|
[[20]] |
Cheng Y, Zhou C, Yuan BG, Wu DJ, Wei Q, Liu XJ. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater 2015;14(10):1013–9.
|
[[21]] |
Xie Y, Wang W, Chen H, Konneker A, Popa BI, Cummer SA. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun 2014;5(1):5553.
|
[[22]] |
Ge H, Xu XY, Liu L, Xu R, Lin ZK, Yu SY, et al. Observation of acoustic skyrmions. Phys Rev Lett 2021;127(14):144502.
|
[[23]] |
Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, et al. A tunable soundabsorbing metamaterial based on coiled-up space. J Appl Phys 2018;123 (18):185109.
|
[[24]] |
Song GY, Cheng Q, Huang B, Dong HY, Cui TJ. Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Appl Phys Lett 2016;109 (13):131901.
|
[[25]] |
Liang Z, Li J. Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 2012;108(11):114301.
|
[[26]] |
Yu SY, Sun XC, Ni X, Wang Q, Yan XJ, He C, et al. Surface phononic graphene. Nat Mater 2016;15(12):1243–7.
|
[[27]] |
Torrent D, Sánchez-Dehesa J. Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Phys Rev Lett 2012;108(17):174301.
|
[[28]] |
Zhang X, Liu Z. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals. Phys Rev Lett 2008;101(26):264303.
|
[[29]] |
Chen ZG, Wu Y. Tunable topological phononic crystals. Phys Rev Appl 2016;5 (5):054021.
|
[[30]] |
Ni X, He C, Sun XC, Liu X, Lu MH, Feng L, et al. Topologically protected oneway edge mode in networks of acoustic resonators with circulating air flow. New J Phys 2015;17(5):053016.
|
[[31]] |
Zhang X, Wang HX, Lin ZK, Tian Y, Xie B, Lu MH, et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat Phys 2019;15(6):582–8.
|
[[32]] |
Christensen J, Willatzen M, Velasco VR, Lu MH. Parity-time synthetic phononic media. Phys Rev Lett 2016;116(20):207601.
|
[[33]] |
Zhu X, Ramezani H, Shi C, Zhu J, Zhang X. PT-symmetric acoustics. Phys Rev X 2014;4(3):031042.
|
[[34]] |
Hu B, Zhang Z, Zhang H, Zheng L, Xiong W, Yue Z, et al. Non-Hermitian topological whispering gallery. Nature 2021;597(7878):655–9.
|
[[35]] |
Popa BI, Cummer SA. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 2014;5(1):3398.
|
[[36]] |
Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 2014;343 (6170):516–9.
|
[[37]] |
Liao G, Luan C, Wang Z, Liu J, Yao X, Fu J. Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications. Adv Mater Technol 2021;6(5):2000787.
|
[[38]] |
Zangeneh-Nejad F, Fleury R. Active times for acoustic metamaterials. Rev Phys 2019;4:100031.
|
[[39]] |
Wu Y, Yang M, Sheng P. Perspective: acoustic metamaterials in transition. J Appl Phys 2018;123(9):090901.
|
[[40]] |
Ge H, Yang M, Ma C, Lu MH, Chen YF, Fang N, et al. Breaking the barriers: advances in acoustic functional materials. Natl Sci Rev 2018;5(2):159–82.
|
[[41]] |
Cummer SA, Christensen J, Alù A. Controlling sound with acoustic metamaterials. Nat Rev Mater 2016;1(3):16001.
|
[[42]] |
Lu MH, Feng L, Chen YF. Phononic crystals and acoustic metamaterials. Mater Today 2009;12(12):34–42.
|
[[43]] |
Muhammad LCW. From photonic crystals to seismic metamaterials: a review via phononic crystals and acoustic metamaterials. Arch Comput Methods Eng 2021;29:1137–98.
|
[[44]] |
Kumar S, Lee HP. The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics 2019;1(3):590–607.
|
[[45]] |
Liu J, Guo H, Wang T. A review of acoustic metamaterials and phononic crystals. Crystals 2020;10(4):305.
|
[[46]] |
Kumar S, Lee HP. Recent advances in active acoustic metamaterials. Int J Appl Mech 2019;11(8):1950081.
|
[[47]] |
Allard J, Atalla N. Propagation of sound in porous media: modelling sound absorbing materials. 2nd ed. Chichester: John Wiley & Sons, Ltd.; 2009.
|
[[48]] |
Yang Z, Mei J, Yang M, Chan NH, Sheng P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett 2008;101 (20):204301.
|
[[49]] |
Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun 2012;3(1):756.
|
[[50]] |
Yang M, Li Y, Meng C, Fu C, Mei J, Yang Z, et al. Sound absorption by subwavelength membrane structures: a geometric perspective. CR Mecanique 2015;343(12):635–44.
|
[[51]] |
Ma G, Yang M, Xiao S, Yang Z, Sheng P. Acoustic metasurface with hybrid resonances. Nat Mater 2014;13(9):873–8.
|
[[52]] |
Yang M, Meng C, Fu C, Li Y, Yang Z, Sheng P. Subwavelength total acoustic absorption with degenerate resonators. Appl Phys Lett 2015;107(10):104104.
|
[[53]] |
Wei P, Croënne C, Tak Chu S, Li J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl Phys Lett 2014;104(12):121902.
|
[[54]] |
Yang M, Ma G, Yang Z, Sheng P. Subwavelength perfect acoustic absorption in membrane-type metamaterials: a geometric perspective. EPJ Appl Metamat 2015;2:10.
|
[[55]] |
Meng C, Zhang X, Tang ST, Yang M, Yang Z. Acoustic coherent perfect absorbers as sensitive null detectors. Sci Rep 2017;7(1):43574.
|
[[56]] |
Wang X, Zhao H, Luo X, Huang Z. Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl Phys Lett 2016;108 (4):041905.
|
[[57]] |
Merkel A, Theocharis G, Richoux O, Romero-García V, Pagneux V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl Phys Lett 2015;107(24):244102.
|
[[58]] |
Richoux O, Achilleos V, Theocharis G, Brouzos I. Subwavelength interferometric control of absorption in three-port acoustic network. Sci Rep 2018;8(1):12328.
|
[[59]] |
Groby JP, Lagarrigue C, Brouard B, Dazel O, Tournat V, Nennig B. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J Acoust Soc Am 2015;137(1):273–80.
|
[[60]] |
Huang S, Fang X, Wang X, Assouar B, Cheng Q, Li Y. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J Acoust Soc Am 2019;145(1):254–62.
|
[[61]] |
Jiménez N, Romero-García V, Pagneux V, Groby JP. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys Rev B 2017;95(1):014205.
|
[[62]] |
Groby JP, Pommier R, Aurégan Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J Acoust Soc Am 2016;139 (4):1660–71.
|
[[63]] |
Jiang X, Liang B, Li R, Zou X, Yin L, Cheng J. Ultra-broadband absorption by acoustic metamaterials. Appl Phys Lett 2014;105(24):243505.
|
[[64]] |
Romero-García V, Theocharis G, Richoux O, Pagneux V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. J Acoust Soc Am 2016;139(6):3395–403.
|
[[65]] |
Kim SR, Kim YH, Jang JH. A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array. J Acoust Soc Am 2006;119 (4):1933–6.
|
[[66]] |
Liu CR, Wu JH, Chen X, Ma F. A thin low-frequency broadband metasurface with multi-order sound absorption. J Phys D Appl Phys 2019;52(10):105302.
|
[[67]] |
Shen Y, Yang Y, Guo X, Shen Y, Zhang D. Low-frequency anechoic metasurface based on coiled channel of gradient cross-section. Appl Phys Lett 2019;114 (8):083501.
|
[[68]] |
Zhang C, Hu X. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability. Phys Rev Appl 2016;6(6):064025.
|
[[69]] |
Yang M, Chen S, Fu C, Sheng P. Optimal sound-absorbing structures. Mater Horiz 2017;4(4):673–80.
|
[[70]] |
Mak HY, Zhang X, Dong Z, Miura S, Iwata T, Sheng P. Going beyond the causal limit in acoustic absorption. Phys Rev Appl 2021;16(4):044062.
|
[[71]] |
Sun M, Fang X, Mao D, Wang X, Li Y. Broadband acoustic ventilation barriers. Phys Rev Appl 2020;13(4):044028.
|
[[72]] |
Leroy V, Strybulevych A, Lanoy M, Lemoult F, Tourin A, Page JH. Superabsorption of acoustic waves with bubble metascreens. Phys Rev B 2015;91(2):020301.
|
[[73]] |
Ivansson SM. Sound absorption by viscoelastic coatings with periodically distributed cavities. J Acoust Soc Am 2006;119(6):3558–67.
|
[[74]] |
Ivansson SM. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes. J Acoust Soc Am 2008;124 (4):1974–84.
|
[[75]] |
Meng H, Wen J, Zhao H, Wen X. Optimization of locally resonant acoustic metamaterials on underwater sound absorption characteristics. J Sound Vibrat 2012;331(20):4406–16.
|
[[76]] |
Huang Z, Zhao S, Su M, Yang Q, Li Z, Cai Z, et al. Bioinspired patterned bubbles for broad and low-frequency acoustic blocking. ACS Appl Mater Interfaces 2020;12(1):1757–64.
|
[[77]] |
Duan M, Yu C, Xin F, Lu TJ. Tunable underwater acoustic metamaterials via quasi-Helmholtz resonance: from low-frequency to ultra-broadband. Appl Phys Lett 2021;118(7):071904.
|
[[78]] |
Zhang Y, Pan J, Chen K, Zhong J. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands. J Acoust Soc Am 2018;144(2):648–59.
|
[[79]] |
Shi K, Jin G, Liu R, Ye T, Xue Y. Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers. Results Phys 2019;12:132–42.
|
[[80]] |
Naify CJ, Martin TP, Layman CN, Nicholas M, Thangawng AL, Calvo DC, et al. Underwater acoustic omnidirectional absorber. Appl Phys Lett 2014;104 (7):073505.
|
[[81]] |
Wang C, Li SD, Zheng WG, Huang QB. Acoustic absorption characteristics of new underwater omnidirectional absorber. Chin Phys Lett 2019;36 (4):044301.
|
[[82]] |
Park CM, Park JJ, Lee SH, Seo YM, Kim CK, Lee SH. Amplification of acoustic evanescent waves using metamaterial slabs. Phys Rev Lett 2011;107 (19):194301.
|
[[83]] |
Li J, Fok L, Yin X, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 2009;8(12):931–4.
|
[[84]] |
Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85 (18):3966–9.
|
[[85]] |
Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater 2008;7(6):435–41.
|
[[86]] |
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308(5721):534–7.
|
[[87]] |
Ambati M, Fang N, Sun C, Zhang X. Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 2007;75(19):195447.
|
[[88]] |
Park JJ, Park CM, Lee KJB, Lee SH. Acoustic superlens using membrane-based metamaterials. Appl Phys Lett 2015;106(5):051901.
|
[[89]] |
Kaina N, Lemoult F, Fink M, Lerosey G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 2015;525(7567):77–81.
|
[[90]] |
Molerón M, Daraio C. Acoustic metamaterial for subwavelength edge detection. Nat Commun 2015;6(1):8037.
|
[[91]] |
Ao X, Chan CT. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys Rev E 2008;77(2):025601.
|
[[92]] |
Christensen J, García de Abajo FJ. Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. Appl Phys Lett 2010;97(16):164103.
|
[[93]] |
Shen YX, Peng YG, Cai F, Huang K, Zhao DG, Qiu CW, et al. Ultrasonic superoscillation wave-packets with an acoustic meta-lens. Nat Commun 2019;10 (1):3411.
|
[[94]] |
García-Chocano VM, Christensen J, Sánchez-Dehesa J. Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys Rev Lett 2014;112(14):144301.
|
[[95]] |
Shen C, Xie Y, Sui N, Wang W, Cummer SA, Jing Y. Broadband acoustic hyperbolic metamaterial. Phys Rev Lett 2015;115(25):254301.
|
[[96]] |
Lemoult F, Fink M, Lerosey G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys Rev Lett 2011;107(6):064301.
|
[[97]] |
Bai L, Dong HY, Song GY, Cheng Q, Huang B, Jiang WX, et al. Impedancematching wavefront-transformation lens based on acoustic metamaterials. Adv Mater Technol 2018;3(11):1800064.
|
[[98]] |
Al Jahdali R, Wu Y. High transmission acoustic focusing by impedancematched acoustic meta-surfaces. Appl Phys Lett 2016;108(3):031902.
|
[[99]] |
Peng S, He Z, Jia H, Zhang A, Qiu C, Ke M, et al. Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Appl Phys Lett 2010;96(26):263502.
|
[[100]] |
Su X, Norris AN, Cushing CW, Haberman MR, Wilson PS. Broadband focusing of underwater sound using a transparent pentamode lens. J Acoust Soc Am 2017;141(6):4408–17.
|
[[101]] |
Chen J, Rao J, Lisevych D, Fan Z. Broadband ultrasonic focusing in water with an ultra-compact metasurface lens. Appl Phys Lett 2019;114(10):104101.
|
[[102]] |
Ruan Y, Liang X, Wang Z, Wang T, Deng Y, Qu F, et al. 3-D underwater acoustic wave focusing by periodic structure. Appl Phys Lett 2019;114(8):081908.
|
[[103]] |
Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314(5801):977–80.
|
[[104]] |
Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312(5781):1780–2.
|
[[105]] |
Cummer SA, Popa BI, Schurig D, Smith DR, Pendry J, Rahm M, et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys Rev Lett 2008;100 (2):024301.
|
[[106]] |
Chen H, Chan C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 2007;91(18):183518.
|
[[107]] |
Cummer SA, Schurig D. One path to acoustic cloaking. New J Phys 2007;9 (3):45.
|
[[108]] |
Cheng Y, Yang F, Xu JY, Liu XJ. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl Phys Lett 2008;92(15):151913.
|
[[109]] |
Popa BI, Zigoneanu L, Cummer SA. Experimental acoustic ground cloak in air. Phys Rev Lett 2011;106(25):253901.
|
[[110]] |
Zigoneanu L, Popa BI, Cummer SA. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat Mater 2014;13(4):352–5.
|
[[111]] |
Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Phys Rev Lett 2011;106(2):024301.
|
[[112]] |
Li XF, Ni X, Feng L, Lu MH, He C, Chen YF. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys Rev Lett 2011;106(8):084301.
|
[[113]] |
Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys 2010;82(4):3045–67.
|
[[114]] |
Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys 2011;83(4):1057–110.
|
[[115]] |
Zhang L, Ren J, Wang JS, Li B. Topological nature of the phonon Hall effect. Phys Rev Lett 2010;105(22):225901.
|
[[116]] |
Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 2012;84(3):1045–66.
|
[[117]] |
Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, et al. Topological acoustics. Phys Rev Lett 2015;114(11):114301.
|
[[118]] |
Xiao M, Ma G, Yang Z, Sheng P, Zhang ZQ, Chan CT. Geometric phase and band inversion in periodic acoustic systems. Nat Phys 2015;11(3):240–4.
|
[[119]] |
He C, Ni X, Ge H, Sun XC, Chen YB, Lu MH, et al. Acoustic topological insulator and robust one-way sound transport. Nat Phys 2016;12 (12):1124–9.
|
[[120]] |
Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice. Phys Rev Lett 2017;118(8):084303.
|
[[121]] |
Zhu Z, Yan M, Pan J, Yang Y, Deng W, Lu J, et al. Acoustic valley spin Chern insulators. Phys Rev Appl 2021;16(1):014058.
|
[[122]] |
Yang Z, Zhang B. Acoustic type-II Weyl nodes from stacking dimerized chains. Phys Rev Lett 2016;117(22):224301.
|
[[123]] |
Shen C, Xu J, Fang NX, Jing Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys Rev X 2014;4 (4):041033.
|
[[124]] |
Bok E, Park JJ, Choi H, Han CK, Wright OB, Lee SH. Metasurface for water-toair sound transmission. Phys Rev Lett 2018;120(4):044302.
|
[[125]] |
Huang Z, Zhao S, Zhang Y, Cai Z, Li Z, Xiao J, et al. Tunable fluid-type metasurface for wide-angle and multifrequency water–air acoustic transmission. Research 2021;2021:9757943.
|
[[126]] |
Huang Z, Zhao Z, Zhao S, Cai X, Zhang Y, Cai Z, et al. Lotus metasurface for wide-angle intermediate-frequency water–air acoustic transmission. ACS Appl Mater Interfaces 2021;13(44):53242–51.
|
[[127]] |
Ding Y, Statharas EC, Yao K, Hong M. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl Phys Lett 2017;110 (24):241903.
|
[[128]] |
Li Z, Yang DQ, Liu SL, Yu SY, Lu MH, Zhu J, et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Sci Rep 2017;7(1):42863.
|
[[129]] |
Liu C, Luo J, Lai Y. Acoustic metamaterials with broadband and wide-angle impedance matching. Phys Rev Mater 2018;2(4):045201.
|
[[130]] |
Fernández-Marín AA, Jiménez N, Groby JP, Sánchez-Dehesa J, Romero-García V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl Phys Lett 2019;115(6):061901.
|
[[131]] |
Song K, Kim J, Hur S, Kwak JH, Lee SH, Kim T. Directional reflective surface formed via gradient-impeding acoustic meta-surfaces. Sci Rep 2016;6 (1):32300.
|
[[132]] |
Xie Y, Popa BI, Zigoneanu L, Cummer SA. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys Rev Lett 2013;110(17):175501.
|
/
〈 |
|
〉 |