A Thermo-Tunable Metamaterial as an Actively Controlled Broadband Absorber

Xiao-Chang Xing, Yang Cao, Xiao-Yong Tian, Lingling Wu

Engineering ›› 2023, Vol. 20 ›› Issue (1) : 143-152.

PDF(3601 KB)
PDF(3601 KB)
Engineering ›› 2023, Vol. 20 ›› Issue (1) : 143-152. DOI: 10.1016/j.eng.2022.04.028
Research
Article

A Thermo-Tunable Metamaterial as an Actively Controlled Broadband Absorber

Author information +
History +

Abstract

Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.

Keywords

Metamaterials / Active control / Thermally tunable / Broadband absorption

Cite this article

Download citation ▾
Xiao-Chang Xing, Yang Cao, Xiao-Yong Tian, Lingling Wu. A Thermo-Tunable Metamaterial as an Actively Controlled Broadband Absorber. Engineering, 2023, 20(1): 143‒152 https://doi.org/10.1016/j.eng.2022.04.028

References

[1]
Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312(5781):1780–2.
[2]
Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012;11(11):917–24.
[3]
Edwards B, Alù A, Silveirinha MG, Engheta N. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 2009;103(15):153901.
[4]
Cui TJ. Microwave metamaterials. Natl Sci Rev 2018;5(2):134–6.
[5]
Díaz-Rubio A, Asadchy VS, Elsakka A, Tretyakov SA. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3 (8):e1602714.
[6]
Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 2014;26 (29):5031–6.
[7]
Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013;340(6138):1304–7.
[8]
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110(19):197401.
[9]
Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater 2013;25(33):4567–72.
[10]
Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12 (11):5750–5.
[11]
Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photonics 2017;11(7):415–20.
[12]
Lin Z, Xu Z, Liu P, Liang Z, Lin YS. Polarization-sensitive terahertz resonator using asymmetrical F-shaped metamaterial. Opt Laser Technol 2020;121:105826.
[13]
Yao D, Yan K, Liu X, Liao S, Yu Y, Lin YS. Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs). OSA Contin 2018;1 (2):349–57.
[14]
Yin M, Tian XY, Han HX, Li DC. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime. Appl Phys Lett 2012;100(12):124101.
[15]
Han H, Wu L, Tian X, Li D, Yin M, Wang Y. Broadband gradient refractive index planar lens based on a compound liquid medium. J Appl Phys 2012;112 (11):114913.
[16]
Lv H, Tian X, Wang MY, Li D. Vibration energy harvesting using a phononic crystal with point defect states. Appl Phys Lett 2013;102(3):034103.
[17]
Feng M, Tian X, Wang J, Yin M, Qu S, Li D. Broadband abnormal reflection based on a metal-backed gradient index liquid slab: an alternative to metasurfaces. J Phys D Appl Phys 2015;48(24):245501.
[18]
Guo S, Hu C, Zhang H. Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J Opt Soc Am B 2020;37 (9):2678–87.
[19]
Zhang HF, Zhang H, Yao Y, Yang J, Liu JX. A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J 2018;10(4):1–10.
[20]
Yin L, Doyhamboure-Fouquet J, Tian X, Li D. Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials. Compos Part B 2018;132:178–87.
[21]
Tao Z, Wan X, Pan BC, Cui TJ. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Appl Phys Lett 2017;110(12):121901.
[22]
Liberal I, Li Y, Engheta N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 2018;7(6):1117–27.
[23]
Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14(11):6526–32.
[24]
Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P. Design of a multilayer broadband switchable absorber based on semiconductor switch. IEEE Antennas Wirel Propag Lett 2019;18(2):373–7.
[25]
Wu Z, Chen X, Zhang Z, Heng L, Wang S, Zou Y. Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl Phys Express 2019;12(5):057003.
[26]
Jeong H, Lim S. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane. Sci Rep 2018;8(1):9226.
[27]
Xing X, Tian X, Jia X, Li D. Reconfigurable liquid electromagnetic metamaterials driven by magnetic fields. Appl Phys Express 2021;14(4):041002.
[28]
Liu X, Padilla WJ. Dynamic manipulation of infrared radiation with MEMS metamaterials. Adv Opt Mater 2013;1(8):559–62.
[29]
Liu M, Susli M, Silva D, Putrino G, Kala H, Fan S, et al. Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 2017;3:17033.
[30]
Long L, Taylor S, Ying X, Wang L. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater Today Energy 2019;13:214–20.
[31]
Ding F, Zhong S, Bozhevolnyi SI. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater 2018;6(9):1701204.
[32]
Komar A, Paniagua-Domínguez R, Miroshnichenko A, Yu YF, Kivshar YS, Kuznetsov AI, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 2018;5(5):1742–8.
[33]
Jeong H, Park JH, Moon YH, Baek CW, Lim S. Thermal frequency reconfigurable electromagnetic absorber using phase change material. Sensors 2018;18 (10):3506.
[34]
Wang L, Xia D, Fu Q, Wang Y, Ding X, Yang B. Thermally tunable ultra-thin metamaterial absorber at P band. J Electromagn Waves Appl 2019;33 (11):1406–15.
[35]
Shen Y, Zhang J, Pang Y, Zheng L, Wang J, Ma H, et al. Thermally tunable ultrawideband metamaterial absorbers based on three-dimensional watersubstrate construction. Sci Rep 2018;8(1):4423.
[36]
Pang Y, Wang J, Cheng Q, Xia S, Zhou XY, Xu Z, et al. Thermally tunable watersubstrate broadband metamaterial absorbers. Appl Phys Lett 2017;110 (10):104103.
[37]
Wu F, Xia Y, Sun M, Xie A. Two-dimensional (2D) few-layers WS2 nanosheets: an ideal nanomaterials with tunable electromagnetic absorption performance. Appl Phys Lett 2018;113(5):052906.
[38]
Liu W, Tan S, Yang Z, Ji G. Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material throughmodulating dielectric loss. Carbon 2018;138:143–53.
[39]
Wang XX, Shu JC, Cao WQ, Zhang M, Yuan J, Cao MS. Eco-mimetic nanoarchitecture for green EMI shielding. Chem Eng J 2019;369:1068–77.
[40]
Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antenn Propag 2000;48(8):1230–4.
[41]
Jia X, Li Q, Ao C, Hu R, Xia T, Xue Z, et al. High thermal conductive shapestabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Compos Part A 2020;129:105710.
AI Summary AI Mindmap
PDF(3601 KB)

Accesses

Citations

Detail

Sections
Recommended

/