Engineering DNA Materials for Sustainable Data Storage Using a DNA Movable-Type System

Zi-Yi Gong, Li-Fu Song, Guang-Sheng Pei, Yu-Fei Dong, Bing-Zhi Li, Ying-Jin Yuan

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 130-136.

PDF(1305 KB)
PDF(1305 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 130-136. DOI: 10.1016/j.eng.2022.05.023
Research
Article

Engineering DNA Materials for Sustainable Data Storage Using a DNA Movable-Type System

Author information +
History +

Abstract

DNA molecules are green materials with great potential for high-density and long-term data storage. However, the current data-writing process of DNA data storage via DNA synthesis suffers from high costs and the production of hazards, limiting its practical applications. Here, we developed a DNA movable-type storage system that can utilize DNA fragments pre-produced by cell factories for data writing. In this system, these pre-generated DNA fragments, referred to herein as “DNA movable types,” are used as basic writing units in a repetitive way. The process of data writing is achieved by the rapid assembly of these DNA movable types, thereby avoiding the costly and environmentally hazardous process of de novo DNA synthesis. With this system, we successfully encoded 24 bytes of digital information in DNA and read it back accurately by means of high-throughput sequencing and decoding, thereby demonstrating the feasibility of this system. Through its repetitive usage and biological assembly of DNA movable-type fragments, this system exhibits excellent potential for writing cost reduction, opening up a novel route toward an economical and sustainable digital data-storage technology.

Graphical abstract

Keywords

Synthetic biology / DNA data storage / DNA movable types / Economical DNA data storage

Cite this article

Download citation ▾
Zi-Yi Gong, Li-Fu Song, Guang-Sheng Pei, Yu-Fei Dong, Bing-Zhi Li, Ying-Jin Yuan. Engineering DNA Materials for Sustainable Data Storage Using a DNA Movable-Type System. Engineering, 2023, 29(10): 130‒136 https://doi.org/10.1016/j.eng.2022.05.023

References

[1]
D. Reinsel, J. Gantz, J. Rydning. Data Age 2025: the evolution of data to life-critical. International Data Corporation, Framingham ( 2017)
[2]
V. Zhirnov, R.M. Zadegan, G.S. Sandhu, G.M. Church, W.L. Hughes. Nucleic acid memory. Nat Mater, 15 (4) ( 2016), pp. 366-370. DOI: 10.1038/nmat4594
[3]
R.E. Fontana Jr, G.M. Decad, S.R. Hetzler. Volumetric density trends (TB/in.3) for storage components: TAPE, hard disk drives, NAND, and Blu-ray. J Appl Phys, 117 (17) ( 2015), p. 17E301
[4]
L.A. Davis. Clean energy perspective. Engineering, 3 (6) ( 2017), p. 782
[5]
M.H. Xie, H.B. Duan, P. Kang, Q. Qiao, L. Bai. Toward an ecological civilization: China’s progress as documented by the second national general survey of pollution sources. Engineering, 7 (9) ( 2021), pp. 1336-1341
[6]
M.J. Han, D.K. Yoon. Advances in soft materials for sustainable electronics. Engineering, 7 (5) ( 2021), pp. 564-580
[7]
G.M. Church, Y. Gao, S. Kosuri. Next-generation digital information storage in DNA. Science, 337 (6102) ( 2012), p. 1628. DOI: 10.1126/science.1226355
[8]
M.G.T.A. Rutten, F.W. Vaandrager, J.A.A.W. Elemans, R.J.M. Nolte. Encoding information into polymers. Nat Rev Chem, 2 (11) ( 2018), pp. 365-381. DOI: 10.1038/s41570-018-0051-5
[9]
L. Ceze, J. Nivala, K. Strauss. Molecular digital data storage using DNA. Nat Rev Genet, 20 (8) ( 2019), pp. 456-466. DOI: 10.1038/s41576-019-0125-3
[10]
Y. Dong, F. Sun, Z. Ping, Q. Ouyang, L. Qian. DNA storage: research landscape and future prospects. Natl Sci Rev, 7 (6) ( 2020), pp. 1092-1107. DOI: 10.1093/nsr/nwaa007
[11]
G.D. Dickinson, G.M. Mortuza, W. Clay, L. Piantanida, C.M. Green, C. Watson, et al.. An alternative approach to nucleic acid memory. Nat Commun, 12 (1) ( 2021), p. 2371
[12]
Y. Zhang, L. Kong, F. Wang, B. Li, C. Ma, D. Chen, et al.. Information stored in nanoscale: encoding data in a single DNA strand with Base64. Nano Today, 33 ( 2020), Article 100871
[13]
J.D. Watson, F.H.C. Crick. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171 (4356) ( 1953), pp. 737-738. DOI: 10.1038/171737a0
[14]
L.F. Song, Z.H. Deng, Z.Y. Gong, L.L. Li, B.Z. Li. Large-scale de novo oligonucleotide synthesis for whole-genome synthesis and data storage: challenges and opportunities. Front Bioeng Biotechnol, 9 ( 2021), Article 689797
[15]
N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, et al.. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494 (7435) ( 2013), pp. 77-80. DOI: 10.1038/nature11875
[16]
R.N. Grass, R. Heckel, M. Puddu, D. Paunescu, W.J. Stark. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew Chem Int Ed Engl, 54 (8) ( 2015), pp. 2552-2555. DOI: 10.1002/anie.201411378
[17]
Y. Erlich, D. Zielinski. DNA Fountain enables a robust and efficient storage architecture. Science, 355 (6328) ( 2017), pp. 950-954. DOI: 10.1126/science.aaj2038
[18]
L. Organick, S.D. Ang, Y.J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, et al.. Random access in large-scale DNA data storage. Nat Biotechnol, 36 ( 2018), pp. 242-248. Erratum in: Nat Biotechnol 2018;36:660. DOI: 10.1038/nbt.4079
[19]
L. Song, F. Geng, Z.Y. Gong, X. Chen, J. Tang, C. Gong, et al.. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nat Commun, 13 (1) ( 2022), p. 5361
[20]
P.L. Antkowiak, J. Lietard, M.Z. Darestani, M.M. Somoza, W.J. Stark, R. Heckel, et al.. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction. Nat Commun, 11 (1) ( 2020), p. 5345
[21]
S.K. Tabatabaei, B. Wang, N.B.M. Athreya, B. Enghiad, A.G. Hernandez, C.J. Fields, et al.. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat Commun, 11 (1) ( 2020), p. 1742
[22]
C. Xu, B. Ma, Z. Gao, X. Dong, C. Zhao, H. Liu. Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage. Sci Adv, 7 (46) ( 2021), p. eabk0100
[23]
W. Chen, M. Han, J. Zhou, Q. Ge, P. Wang, X. Zhang, et al.. An artificial chromosome for data storage. Natl Sci Rev, 8 (5) ( 2021), p. nwab028
[24]
M. Hao, H. Qiao, Y. Gao, Z. Wang, X. Qiao, X. Chen, et al.. A mixed culture of bacterial cells enables an economic DNA storage on a large scale. Commun Biol, 3 (1) ( 2020), p. 416
[25]
J. Koch, S. Gantenbein, K. Masania, W.J. Stark, Y. Erlich, R.N. Grass. A DNA-of-things storage architecture to create materials with embedded memory. Nat Biotechnol, 38 (1) ( 2020), pp. 39-43. DOI: 10.1038/s41587-019-0356-z
[26]
K.N. Lin, K. Volkel, J.M. Tuck, A.J. Keung. Dynamic and scalable DNA-based information storage. Nat Commun, 11 (1) ( 2020), p. 2981
[27]
K. Matange, J.M. Tuck, A.J. Keung. DNA stability: a central design consideration for DNA data storage systems. Nat Commun, 12 (1) ( 2021), p. 1358
[28]
Y. Ren, Y. Zhang, Y. Liu, Q. Wu, J. Su, F. Wang, et al.. DNA-based concatenated encoding system for high-reliability and high-density data storage. Small Methods, 6 (4) ( 2022), p. 2101335
[29]
L. Song, A.P. Zeng. Orthogonal information encoding in living cells with high error-tolerance, safety, and fidelity. ACS Synth Biol, 7 (3) ( 2018), pp. 866-874. DOI: 10.1021/acssynbio.7b00382
[30]
M.A.R. Meier, B.K. Barner-Kowollik Christopher. A new class of materials: sequence-defined macromolecules and their emerging applications. Adv Mater, 31 (26) ( 2019), p. 1806027
[31]
A.C. Boukis, M.A.R. Meier. Data storage in sequence-defined macromolecules via multicomponent reactions. Eur Polym J, 104 ( 2018), pp. 32-38
[32]
S. Martens, A. Landuyt, P. Espeel, B. Devreese, P. Dawyndt, F. Du Prez. Multifunctional sequence-defined macromolecules for chemical data storage. Nat Commun, 9 (1) ( 2018), p. 4451
[33]
L. Anavy, I. Vaknin, O. Atar, R. Amit, Z. Yakhini. Data storage in DNA with fewer synthesis cycles using composite DNA letters. Nat Biotechnol, 37 ( 2019), pp. 1229-1236. Correction in: Nat Biotechnol 2019;37:1237. DOI: 10.1038/s41587-019-0240-x
[34]
L.C. Meiser, P.L. Antkowiak, J. Koch, W.D. Chen, A.X. Kohll, W.J. Stark, et al.. Reading and writing digital data in DNA. Nat Protoc, 15 (1) ( 2020), pp. 86-101. DOI: 10.1038/s41596-019-0244-5
[35]
M. Yang, M. Liu, J. Cheng, H. Wang. A movable type bioelectronics printing technology for modular fabrication of biosensors. Sci Rep, 11 (1) ( 2021), p. 22323
[36]
Z. Ping, D. Ma, X. Huang, S. Chen, L. Liu, F. Guo, et al.. Carbon-based archiving: current progress and future prospects of DNA-based data storage. GigaScience, 8 (6) ( 2019), p. giz075
[37]
S. Palluk, D.H. Arlow, T. de Rond, S. Barthel, J.S. Kang, R. Bector, et al.. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol, 36 (7) ( 2018), pp. 645-650. DOI: 10.1038/nbt.4173

This work was supported by the National Key Research and Development Program of China (2018YFA0900100), the Natural Science Foundation of Tianjin, China (19JCJQJC63300) and Tianjin University.

Funding
the National Key Research and Development Program of China(2018YFA0900100); the Natural Science Foundation of Tianjin, China(19JCJQJC63300)
AI Summary AI Mindmap
PDF(1305 KB)

Accesses

Citations

Detail

Sections
Recommended

/