
Acoustic Micro-Manipulation and its Biomedical Applications
Zhichao Ma, Peer Fischer
Engineering ›› 2023, Vol. 24 ›› Issue (5) : 13-16.
Acoustic Micro-Manipulation and its Biomedical Applications
[1] |
Wade NJ. Sound and sight: acoustic figures and visual phenomena. Perception 2005;34(10):1275‒90.
|
[2] |
Strutt JW. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Proc R Soc Lond 1883;36(228‒31):10‒1.
|
[3] |
Rayleigh L. On the pressure of vibrations. Lond Edinb Philos Mag J Sci 1902;3(15):338‒46.
|
[4] |
Harvey EN, Loomis AL. High frequency sound waves of small intensity and their biological effects. Nature 1928;121(3051):622‒4.
|
[5] |
Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 2011;83(2):647‒704.
|
[6] |
Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, et al. Acoustic tweezers for the life sciences. Nat Methods 2018;15(12):1021‒8.
|
[7] |
Augustsson P, Karlsen JT, Su HW, Bruus H, Voldman J. Iso-acoustic focusing of cells for size-insensitive acousto‒mechanical phenotyping. Nat Commun 2016;7:11556.
|
[8] |
Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 2016;7(1):11085.
|
[9] |
Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009;9(20):2890‒5.
|
[10] |
Huang PH, Nama N, Mao Z, Li P, Rufo J, Chen Y, et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 2014;14(22):4319‒23.
|
[11] |
Ryu K, Chung SK, Cho SK. Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices. J Assoc Lab Autom 2010;15(3):163‒71.
|
[12] |
Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 2009;9(18):2738‒41.
|
[13] |
Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng 2015;1:15001.
|
[14] |
Feng L, Song B, Chen Y, Liang S, Dai Y, Zhou Q, et al. On-chip rotational manipulation of microbeads and oocytes using acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics 2019;13(6):064103.
|
[15] |
Feng J, Yuan J, Cho SK. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 2015;15(6):1554‒62.
|
[16] |
Qiu T, Adams F, Palagi S, Melde K, Mark A, Wetterauer U, et al. Wireless acoustic-surface actuators for miniaturized endoscopes. ACS Appl Mater Interfaces 2017;9(49):42536‒43.
|
[17] |
Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang PH, et al. Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA 2015;112(16):4970‒5.
|
[18] |
Cui W, Mu L, Duan X, Pang W, Reed MA. Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications. Nanoscale 2019;11(31):14625‒34.
|
[19] |
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 2015;6:8686.
|
[20] |
Baresch D, Thomas JL, Marchiano R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys Rev Lett 2016;116(2):24301.
|
[21] |
Baudoin M, Thomas JL, Sahely RA, Gerbedoen JC, Gong Z, Sivery A, et al. Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat Commun 2020;11(1):4244.
|
[22] |
Lo WC, Fan CH, Ho YJ, Lin CW, Yeh CK. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc Natl Acad Sci USA 2021;118(4).
|
[23] |
Ghanem MA, Maxwell AD, Wang YN, Cunitz BW, Khokhlova VA, Sapozhnikov OA, et al. Noninvasive acoustic manipulation of objects in a living body. Proc Natl Acad Sci USA 2020;117(29):16848‒55.
|
[24] |
Yang Y, Ma T, Li S, Zhang Q, Huang J, Liu Y, et al. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research 2021;2021:9781394.
|
[25] |
Cai H, Ao Z, Hu L, Moon Y, Wu Z, Lu HC, et al. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst 2020;145(19):6243‒53.
|
[26] |
Jiménez-Gambín S, Jiménez N, Benlloch JM, Camarena F. Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms. Sci Rep 2019;9:20104.
|
[27] |
Esfahlani H, Lissek H, Mosig JR. Generation of acoustic helical wavefronts using metasurfaces. Phys Rev B 2017;95(2):24312.
|
[28] |
Pan Y, Yoon S, Sun J, Huang Z, Lee C, Allen M, et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc Natl Acad Sci USA 2018;115(5):992‒7.
|
[29] |
Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Curr Opin Neurobiol 2018;50:222‒31.
|
[30] |
Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013;94(5):487‒95.
|
[31] |
Bai X, Song B, Chen Z, Zhang W, Chen D, Dai Y, et al. Postoperative evaluation of tumors based on label-free acoustic separation of circulating tumor cells by microstreaming. Lab Chip 2021;21(14):2721‒9.
|
[32] |
Guo F, Mao Z, Chen Y, Xie Z, Lata JP, Li P, et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci USA 2016;113(6):1522‒7.
|
[33] |
Ma Z, Holle AW, Melde K, Qiu T, Poeppel K, Kadiri VM, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater 2020;32(4):1904181.
|
[34] |
Ren T, Chen P, Gu L, Ogut MG, Demirci U. Soft ring-shaped cellu-robots with simultaneous locomotion in batches. Adv Mater 2020;32(8):1905713.
|
[35] |
Li J, Crivoi A, Peng X, Shen L, Pu Y, Fan Z, et al. Three dimensional acoustic tweezers with vortex streaming. Commun Phys 2021;4(1):113.
|
[36] |
Goyal R, Athanassiadis AG, Ma Z, Fischer P. Amplification of acoustic forces using microbubble arrays enables manipulation of centimeter-scale objects. Phys Rev Lett 2022;128(25):254502.
|
[37] |
Dentry MB, Yeo LY, Friend JR. Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E 2016;94(5):59901.
|
[38] |
Hasegawa T, Yosioka K. Acoustic-radiation force on a solid elastic sphere. J Acoust Soc Am 1969;46(5B):1139‒43.
|
[39] |
Gu Y, Chen C, Rufo J, Shen C,Wang Z, Huang PH, et al. Acoustofluidic holography for micro- to nanoscale particle manipulation. ACS Nano 2020;14(11):14635‒45.
|
[40] |
Melde K, Mark AG, Qiu T, Fischer P. Holograms for acoustics. Nature 2016;537(7621):518‒22.
|
[41] |
Soto F, Martin A, Ibsen S, Vaidyanathan M, Garcia-Gradilla V, Levin Y, et al. Acoustic microcannons: toward advanced microballistics. ACS Nano 2016;10(1):1522‒8.
|
[42] |
Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol 1995;21(8):1059‒65.
|
[43] |
Zhu P, Chen Y, Shi J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 2020;32(29):2001976.
|
[44] |
Meng L, Liu X, Wang Y, Zhang W, Zhou W, Cai F, et al. Sonoporation of cells by a parallel stable cavitation microbubble array. Adv Sci 2019;6(17):1900557.
|
[45] |
Wang Z, Huang P-H, Chen C, Bachman H, Zhao S, Yang S, et al. Cell lysis via acoustically oscillating sharp edges. Lab Chip 2019;19(24):4021‒32.
|
[46] |
Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, et al. Biofabrication of a functional tubular construct from tissue spheroids using magnetoacoustic levitational directed assembly. Adv Healthc Mater 2020;9(24):2000721.
|
[47] |
Shin JH, Seo J, Hong J, Chung SK. Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects. Sens Actuators B Chem 2017;246:415‒20.
|
[48] |
Ma Z, Guo J, Liu YJ, Ai Y. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. Nanoscale 2015;7(33):14047‒54.
|
[49] |
Jiménez-Gambín S, Jiménez N, Pouliopoulos AN, Benlloch JM, Konofagou EE, Camarena F. Acoustic holograms for bilateral blood‒brain barrier opening in a mouse model. IEEE Trans Biomed Eng 2022;69(4):1359‒68.
|
/
〈 |
|
〉 |