
Tumor-Specific CircRNA-Derived Antigen Peptide Identification for Hepatobiliary Tumors
Wenwen Wang, Lili Ma, Zheng Xing, Tinggan Yuan, Jinxia Bao, Yanjing Zhu, Xiaofang Zhao, Yan Zhao, Yali Zong, Yani Zhang, Siyun Shen, Xinyao Qiu, Shuai Yang, Hongyang Wang, Dong Gao, Peng Wang, Lei Chen
Engineering ›› 2023, Vol. 22 ›› Issue (3) : 159-170.
Tumor-Specific CircRNA-Derived Antigen Peptide Identification for Hepatobiliary Tumors
The application of tumor antigen-based immunotherapy is hindered by the rarity of validated immunogenic peptides. In this study, we aimed to investigate the potential of circular RNAs (circRNAs) as a novel source of tumor antigen peptides in hepatobiliary tumor organoids. Using RNA-sequencing (RNA-seq) with an algorithm-based score tool, 3950 translated tumor-specific circRNAs were predicted to generate 18 971 antigen peptides in 27 organoids. In view of the antigen landscape, 11 amino acid length (mer) peptides and human leukocyte antigen (HLA)-A binding peptides harbored the highest immunogenicity-related scores. In three out of five analyzed organoids, 13 predicted antigen peptides were directly confirmed as HLA-A, -B, and -C (HLA-ABC) binding peptides with mass spectrometry (MS)-based immunopeptidomics. CircRNA-derived tumor-specific peptides presented by the HLA-ABC molecules stimulated cluster of differentiation 8 (CD8) T cells to exhibit increased CD107a interferon γ (IFNγ) co-expressions and IFNγ secretion in flow cytometry and enzyme-linked immunosorbent assay (ELISA). Cytotoxic T cell activity targeting the organoids, induced by the immunogenic circRNA-derived peptides, was verified in a killing assay. Notably, the antigen peptide YGFNEILKK from circTBC1D15 was not only recognized as an HLA-ABC-presented peptide of the organoids but also drastically reduced the tumor organoid survival rate. Our findings highlight a crucial subset for generating tumor antigens, which has implications for targeting tumor-specific circRNAs in cancers.
Tumor antigen / Patient-derived hepatobiliary tumor organoid / Circular RNA / Mass-spectrometry-based immunopeptidomics
[1] |
Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 2018;18(3):168–82.
|
[2] |
Basu R, Whitlock BM, Husson J, Le Floc’h A, Jin W, Oyler-Yaniv A, et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 2016;165(1):100–10.
|
[3] |
Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov 2019;9(8):1022–35.
|
[4] |
Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 2015;125(10):3981–91.
|
[5] |
Hansen UK, Ramskov S, Bjerregaard AM, Borch A, Andersen R, Draghi A, et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol 2020;11:373.
|
[6] |
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med 2019;25(5):767–75.
|
[7] |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of circRNAs. Mol Cell 2017;66(1):9–21.e7.
|
[8] |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019;176(4):869–881.e13.
|
[9] |
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015;21(2):172–9.
|
[10] |
Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018;9(1):4475.
|
[11] |
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995;268(5209):415–7.
|
[12] |
Zhao J, Wu J, Xu T, Yang Q, He J, Song X. IRESfinder: identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics 2018;45(7):403–6.
|
[13] |
Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD, Paria BC, et al. T-cell responses to TP53 ‘‘Hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res 2018;24(22):5562–73.
|
[14] |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23(12):1424–35.
|
[15] |
Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep 2019;27(4):1265–76.e4.
|
[16] |
Zumwalde NA, Haag JD, Sharma D, Mirrielees JA, Wilke LG, Gould MN, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vd2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res 2016;9(4):305–16.
|
[17] |
Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods 2015;421:89–95.
|
[18] |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 2018;174(6):1586–98.e12.
|
[19] |
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and biobank recapitulates interand intra-tumoral heterogeneity. Cell 2020;180(1):188–204.e22.
|
[20] |
Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J 2019;38(12):38.
|
[21] |
Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019;380(15):1450–62.
|
[22] |
Zhao Y, Li ZX, Zhu YJ, Fu J, Zhao XF, Zhang YN, et al. Single-cell transcriptome analysis uncovers intratumoral heterogeneity and underlying mechanisms for drug resistance in hepatobiliary tumor organoids. Adv Sci 2021;8(11): e2003897.
|
[23] |
Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 2013;41(14):e142.
|
[24] |
Kawaguchi S, Higasa K, Shimizu M, Yamada R, Matsuda F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat 2017;38(7):788–97.
|
[25] |
Nariai N, Kojima K, Saito S, Mimori T, Sato Y, Kawai Y, et al. HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data. BMC Genomics 2015;16(S2):S7.
|
[26] |
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014;159(1):134–47.
|
[27] |
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. iScience 2019;21:249–60.
|
[28] |
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2021;2(3):100141.
|
[29] |
Wang X, Dong Y, Wu Z, Wang G, Shi Y, Zheng Y. Machine learning-based comparative analysis of pan-cancer and pan-normal tissues identifies pancancer tissue-enriched circRNAs related to cancer mutations as potential exosomal biomarkers. Front Oncol 2021;11:703461.
|
[30] |
Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, et al. Differential expression and bioinformatics analysis of circRNA in PDGF-BB-induced vascular smooth muscle cells. Front Genet 2020;11:530.
|
[31] |
Li Z, Chen G, Cai Z, Dong X, He L, Qiu L, et al. Profiling of hepatocellular carcinoma neoantigens reveals immune microenvironment and clonal evolution related patterns. Chin J Cancer Res 2021;33(3):364–78.
|
[32] |
Newey A, Griffiths B, Michaux J, Pak HS, Stevenson BJ, Woolston A, et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J Immunother Cancer 2019;7(1):309.
|
[33] |
Lorenzo-Herrero S, Sordo-Bahamonde C, Gonzalez S, López-Soto A. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol Biol 2019;1884:119–30.
|
[34] |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018;172(1–2):373–86.e10.
|
[35] |
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013;9(9):e1003777.
|
[36] |
Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016;165(2):289–302.
|
[37] |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015;160 (6):1125–34.
|
[38] |
Coulie PG, Lehmann F, Lethé B, Herman J, Lurquin C, Andrawiss M, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 1995;92(17):7976–80.
|
[39] |
Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996;183(3):1131–40.
|
[40] |
Michaux A, Larrieu P, Stroobant V, Fonteneau JF, Jotereau F, van den Eynde BJ, et al. A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a longer peptide fragment followed by trimming. J Immunol 2014;192(4):1962–71.
|
[41] |
Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol 2018;36(11):1056–8.
|
[42] |
Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 2004;427 (6971):252–6.
|
[43] |
Xiang R, Ma L, Yang M, Zheng Z, Chen X, Jia F, et al. Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens. Commun Biol 2021;4(1):496.
|
[44] |
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass spectrometry-based identification of MHC-associated peptides. Cancers 2020;12(3):12.
|
[45] |
Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 2015;14(3):658–73.
|
[46] |
Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 2017;46(2):315–26.
|
[47] |
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature 2014;509 (7502):582–7.
|
[48] |
Liu T, Tan J, Wu M, Fan W, Wei J, Zhu B, et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+ CD8+ T cells. Gut 2021;70 (10):1965–77.
|
[49] |
Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm 2020;1(1):47–68.
|
/
〈 |
|
〉 |