A MEMS Micro Force Sensor Based on a Laterally Movable Gate Field-Effect Transistor (LMGFET) with a Novel Decoupling Sandwich Structure

Wendi Gao, Zhixia Qiao, Xiangguang Han, Xiaozhang Wang, Adnan Shakoor, Cunlang Liu, Dejiang Lu, Ping Yang, Libo Zhao, Yonglu Wang, Jiuhong Wang, Zhuangde Jiang, Dong Sun

Engineering ›› 2023, Vol. 21 ›› Issue (2) : 61-74.

PDF(5346 KB)
PDF(5346 KB)
Engineering ›› 2023, Vol. 21 ›› Issue (2) : 61-74. DOI: 10.1016/j.eng.2022.06.018
Research
Article

A MEMS Micro Force Sensor Based on a Laterally Movable Gate Field-Effect Transistor (LMGFET) with a Novel Decoupling Sandwich Structure

Author information +
History +

Abstract

This paper presents the development of a novel micro force sensor based on a laterally movable gate field-effect transistor (LMGFET). A precise electrical model is proposed for the performance evaluation of small-scale LMGFET devices and exhibits improved accuracy in comparison with previous models. A novel sandwich structure consisting of a gold cross-axis decoupling gate array layer and two soft photoresistive SU-8 layers is utilized. With the proposed dual-differential sensing configuration, the output current of the LMGFET lateral operation under vertical interference is largely eliminated, and the relative output error of the proposed sensor decreases from 4.53% (traditional differential configuration) to 0.01%. A practicable fabrication process is also developed and simulated for the proposed sensor. The proposed LMGFET-based force sensor exhibits a sensitivity of 4.65 µA·nN−1, which is comparable with vertically movable gate field-effect transistor (VMGFET) devices, but has an improved nonlinearity of 0.78% and a larger measurement range of ±5.10 µN. These analyses provide a comprehensive design optimization of the electrical and structural parameters of LMGFET devices and demonstrate the proposed sensor's excellent force-sensing potential for biomedical micromanipulation applications.

Keywords

Force sensor / Laterally movable gate / Field-effect transistor / Photoresistive SU-8 / Biomedical micromanipulation

Cite this article

Download citation ▾
Wendi Gao, Zhixia Qiao, Xiangguang Han, Xiaozhang Wang, Adnan Shakoor, Cunlang Liu, Dejiang Lu, Ping Yang, Libo Zhao, Yonglu Wang, Jiuhong Wang, Zhuangde Jiang, Dong Sun. A MEMS Micro Force Sensor Based on a Laterally Movable Gate Field-Effect Transistor (LMGFET) with a Novel Decoupling Sandwich Structure. Engineering, 2023, 21(2): 61‒74 https://doi.org/10.1016/j.eng.2022.06.018

References

[1]
Dostanic M, Windt LM, Stein JM, van Meer BJ, Bellin M, Orlova V, et al. A miniaturized EHT platform for accurate measurements of tissue contractile properties. J Microelectromech Syst 2020;29(5):881–7.
[2]
Nakahara K, Sakuma S, Kawahara M, Takahashi M, Arai F. Time-lapse mechanical characterization of zona pellucida using a cell carrier chip. J Microelectromech Syst 2018;27(3):464–71.
[3]
Corbin EA, Adeniba OO, Ewoldt RH, Bashir R. Dynamic mechanical measurement of the viscoelasticity of single adherent cells. Appl Phys Lett 2016;108(9):093701.
[4]
Pu H, Chen H, Sun Yu, Liu Na, Yu J, Yang Y, et al. Micropipette aspiration of single cells for both mechanical and electrical characterization. IEEE Trans Biomed Eng 2019;66(11):3185–91.
[5]
Tsukagoshi T, Nguyen TV, Shoji KH, Takahashi H, Matsumoto K, Shimoyama I. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors. J Phys D Appl Phys 2018;51(14):145401.
[6]
Pan P, Qu J, Zhang W, Dong X, Wei W, Ru C, et al. Robotic stimulation of freely moving Drosophila larvae using a 3D-printed micro force sensor. IEEE Sens J 2019;19(8):3165–73.
[7]
Zhang W, Pan P, Wang X, Chen Y, Rao Y, Liu X. Force-controlled mechanical stimulation and single-neuron fluorescence imaging of Drosophila larvae. IEEE Robot Autom Lett 2021;6(2):3736–43.
[8]
Wei Y, Xu Q. Design and testing of a new force-sensing cell microinjector based on small-stiffness compliant mechanism. IEEE/ASME Trans Mechatron 2021;26(2):818–29.
[9]
Wei Y, Xu Q. A survey of force-assisted robotic cell microinjection technologies. IEEE Trans Autom Sci Eng 2019;16(2):931–45.
[10]
Cailliez J, Boudaoud M, Mohand-Ousaid A, Weill–Duflos A, Haliyo S, Régnier S. Modeling and experimental characterization of an active MEMS based force sensor. J Micro-Bio Robot 2019;15(1):53–64.
[11]
Qu J, Zhang W, Jung A, Silva-Da Cruz S, Liu X. Microscale compression and shear testing of soft materials using an MEMS microgripper with two-axis actuators and force sensors. IEEE Trans Autom Sci Eng 2017;14(2):834–43.
[12]
Grech D, Tarazona A, De Leon MT, Kiang KS, Zekonyte J, Wood RJK, et al. A quasi-concertina force-displacement MEMS probe for measuring biomechanical properties. Sens Actuators A Phys 2018;275:67–74.
[13]
Stavrov VT, Shulev AA, Hardalov CM, Todorov VM, Roussev IR. All-silicon microforce sensor for bio applications. In: Proceedings of SPIE Microtechnologies; 2013 Apr 24–26; Grenoble, France. SPIE; 2013. p. 87630Y.
[14]
Xie Y, Sun D, Liu C, Tse HY, Cheng SH. A force control approach to a robotassisted cell microinjection system. Int J Robot Res 2010;29(9):1222–32.
[15]
Xie Y, Zhou Y, Lin Y, Wang L, Xi W. Development of a microforce sensor and its array platform for robotic cell microinjection force measurement. Sensors 2016;16(4):483.
[16]
Gao W, Zhao L, Jiang Z, Xia Y, Guo X, Zhao Z, et al. A novel MEMS force sensor based on laterally movable gate array field effect transistor (LMGAFET). In: Proceedings of 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 Apr 9–12; Los Angeles, CA, USA. IEEE; 2017. p. 723–7.
[17]
Zang Y, Zhang F, Huang D, Gao X, Di C, Zhu D. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun 2015;6:6269.
[18]
Ajmera PK, Song IH. Laterally movable gate FET (LMGFET) for on-chip integration of MEMS with electronics. In: Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials; 2001 Mar 4–8; Newport Beach, CA, USA. SPIE; 2001. p. 30–7.
[19]
Gao W, Shakoor A, Xie M, Chen S, Guan Z, Zhao L, et al. Precise automated intracellular delivery using a robotic cell microscope system with threedimensional image reconstruction information. IEEE/ASME Trans Mechatron 2020;25(6):2870–81.
[20]
Gao W, Shakoor A, Zhao L, Jiang Z, Sun D. 3D image reconstruction of biological organelles with a robot-aided microscopy system for intracellular surgery. IEEE Robot Autom Lett 2019;4(2):231–8.
[21]
Kang HS, Lee KH, Yang DY, You BH, Song IH. Micro-accelerometer based on vertically movable gate field effect transistor. Nano-Micro Lett 2015;7(3): 282–90.
[22]
Aoyagi S, Suzuki M, Kogure J, Kong T, Taguchi R, Takahashi T, et al. Accelerometer using MOSFET with movable gate electrode: electroplating thick nickel proof mass on flexible Parylene beam for enhancing sensitivity. In: Proceedings of 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference; 2011 Jun 5–9; Beijing, China. IEEE; 2011. p. 2030–3.
[23]
Coe DJ, English JM, Lindquist RG, Kaiser TJ. Model of a MEMS sensor using a common gate MOSFET differential amplifier. J Phys D Appl Phys 2006;39(20): 4353–8.
[24]
Song IH, Ajmera PK. A laterally movable gate field effect transistor. J Microelectromech Syst 2009;18(1):208–16.
[25]
Gao W, Jia C, Jiang Z, Zhou X, Zhao L, Sun D. The design and analysis of a novel micro force sensor based on depletion type movable gate field effect transistor. J Microelectromech Syst 2019;28(2):298–310.
[26]
Zhang A, Zhang L, Tang Z, Cheng X, Wang Y, Chen KJ, et al. Analytical modeling of capacitances for GaN HEMTs, including parasitic components. IEEE Trans Electron Dev 2014;61(3):755–61.
[27]
Bansal A, Paul BC, Roy K. An analytical fringe capacitance model for interconnects using conformal mapping. IEEE Trans Comput Des Integr Circuits Syst 2006;25(12):2765–74.
[28]
Bao M, Yang H, Yin H, Shen S. Effects of electrostatic forces generated by the driving signal on capacitive sensing devices. Sens Actuators A Phys 2000;84(3):213–9.
[29]
El-Mansy YA. Analysis and characterization of the depletion-mode IGFET. IEEE J Solid-State Circuits 1980;15(3):331–40.
[30]
Sun SC, Plummer JD. Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces. IEEE J Solid-State Circuits 1980;15(4): 562–73.
[31]
Arora N. MOSFET models for VLSI circuit simulation. Vienna: Springer Vienna; 1993.
[32]
Coen RW, Muller RS. Velocity of surface carriers in inversion layers on silicon. Solid-State Electron 1980;23(1):35–40.
[33]
Ge C, Cretu E. A sacrificial-layer-free fabrication technology for MEMS transducer on flexible substrate. Sens Actuators A Phys 2019;286: 202–10.
[34]
Nagai M, Tanizaki K, Shibata T. Batch assembly of SU-8 movable components in channel under mild conditions for dynamic microsystems: application to biohybrid systems. J Microelectromech Syst 2019;28(3):419–28.
[35]
Ge C, Cretu E. Design and fabrication of SU-8 CMUT arrays through grayscale lithography. Sens Actuators A Phys 2018;280:368–75.
[36]
Vinje J, Beckwith KS, Sikorski P. Electron beam lithography fabrication of SU-8 polymer structures for cell studies. J Microelectromech Syst 2020;29 (2):160–9.
[37]
Dai W, Lian K, Wang W. A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces. Microsyst Technol 2005;11 (7):526–34.
[38]
Dai W, Lian K, Wang W. Design and fabrication of a SU-8 based electrostatic microactuator. Microsyst Technol 2007;13(3–4):271–7.
[39]
Microchem. Datasheet of SU-8 2025–2075 [Internet]. Newton: Microchem; 2009 Sep 22 [cited 2021 Sep 3]. Available from: https://kayakuam.com/ products/su-8-2000/.
AI Summary AI Mindmap
PDF(5346 KB)

Accesses

Citations

Detail

Sections
Recommended

/