Key Technology and Engineering Development of Multi-Electron Battery Systems

Renjie Chen, Feng Wu

Engineering ›› 2023, Vol. 21 ›› Issue (2) : 24-27.

PDF(1122 KB)
PDF(1122 KB)
Engineering ›› 2023, Vol. 21 ›› Issue (2) : 24-27. DOI: 10.1016/j.eng.2022.07.015
Views & Comments

Key Technology and Engineering Development of Multi-Electron Battery Systems

Author information +
History +

Cite this article

Download citation ▾
Renjie Chen, Feng Wu. Key Technology and Engineering Development of Multi-Electron Battery Systems. Engineering, 2023, 21(2): 24‒27 https://doi.org/10.1016/j.eng.2022.07.015

References

[1]
Gao XP, Yang HX. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 2010;3(2):174–89.
[2]
Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 2016;3(10):1600051.
[3]
Huang YX, Wu F, Chen RJ. Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Natl Sci Rev 2020;7 (8):1367–86.
[4]
Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7(1):19–29.
[5]
Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater 2012;11(1):19–29.
[6]
Xin S, Chang Z, Zhang X, Guo YG. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl Sci Rev 2017;4(1): 54–70.
[7]
Ma Y, Li L, Qian J, Qu W, Luo R, Wu F, et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Mater 2021;39:203–24.
[8]
Zhao Y, Amirmaleki M, Sun Q, Zhao C, Codirenzi A, Goncharova LV, et al. Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode. Matter 2019;1(5):1215–31.
[9]
Huang J, Liu J, He J, Wu M, Qi S, Wang H, et al. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with quafunctional heptafluorobutyric anhydride. Angew Chem Int Ed Engl 2021;60 (38):20717–22.
[10]
Xiong P, Zhang F, Zhang X, Wang S, Liu H, Sun B, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat Commun 2020;11:3297.
[11]
Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater 2019;9(33):1901457.
[12]
Ding F, Xu Wu, Graff GL, Zhang J, Sushko ML, Chen X, et al. Dendrite-free Lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 2013;135(11):4450–6.
[13]
Zhou T, Zhao Y, El Kazzi M, Choi JW, Coskun A. Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries. ACS Energy Lett 2021;6(5):1711–8.
[14]
Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, et al. Alkali-metal anodes: from lab to market. Joule 2019;3(10):2334–63.
[15]
Qi Y, Li QJ, Wu Y, Bao SJ, Li C, Chen Y, et al. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na–S batteries. Nat Commun 2021;12(1):6347.
[16]
Gao H, Gallant BM. Advances in the chemistry and applications of alkalimetal–gas batteries. Nat Rev Chem 2020;4(11):566–83.
AI Summary AI Mindmap
PDF(1122 KB)

Accesses

Citations

Detail

Sections
Recommended

/