Interactions of Microplastics and Methane Seepage in the Deep-Sea Environment

Jing-Chun Feng, Zhifeng Yang, Wenliang Zhou, Xingwei Feng, Fuwen Wei, Bo Li, Chuanxin Ma, Si Zhang, Linlin Xia, Yanpeng Cai, Yi Wang

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 159-167.

PDF(2917 KB)
PDF(2917 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 159-167. DOI: 10.1016/j.eng.2022.08.009
Research
Article

Interactions of Microplastics and Methane Seepage in the Deep-Sea Environment

Author information +
History +

Abstract

Microplastics (MPs) are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle. The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks. Here, we demonstrate that cold seep sediments, which are characterized by methane fluid seepage and a chemosynthetic ecosystem, effectively capture and accommodate small-scale (< 100 μm) MPs, with 16 types of MPs being detected. The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas. Methane seepage is beneficial to the accumulation, fragmentation, increased diversity, and aging of MPs. In turn, the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide, which is associated with the anaerobic oxidation of methane (AOM). The efficiency of the AOM determines whether the seeping methane (which has a greenhouse effect 83 times greater than that of CO2 over a 20-year period) can enter the atmosphere, which is important to the global methane cycle, since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.

Graphical abstract

Keywords

Microplastics / Anaerobic oxidation of methane / Cold seeps / Diversity index / Fragmentation / Gas hydrates

Cite this article

Download citation ▾
Jing-Chun Feng, Zhifeng Yang, Wenliang Zhou, Xingwei Feng, Fuwen Wei, Bo Li, Chuanxin Ma, Si Zhang, Linlin Xia, Yanpeng Cai, Yi Wang. Interactions of Microplastics and Methane Seepage in the Deep-Sea Environment. Engineering, 2023, 29(10): 159‒167 https://doi.org/10.1016/j.eng.2022.08.009

References

[[1]]
J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, et al.. Plastic waste inputs from land into the ocean. Science, 347 (6223) ( 2015), pp. 768-771. DOI: 10.1126/science.1260352
[[2]]
K. Pabortsava, R.S. Lampitt. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun, 11 (1) ( 2020), p. 4073
[[3]]
M. Cole, P.K. Lindeque, E. Fileman, J. Clark, C. Lewis, C. Halsband, et al.. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ Sci Technol, 50 (6) ( 2016), pp. 3239-3246. DOI: 10.1021/acs.est.5b05905
[[4]]
E.L. Teuten, J.M. Saquing, D.R.U. Knappe, M.A. Barlaz, S. Jonsson, A. Björn, et al.. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B, 364 (1526) ( 2009), pp. 2027-2045. DOI: 10.1098/rstb.2008.0284
[[5]]
M. Kooi, E.H.V. Nes, M. Scheffer, A.A. Koelmans. Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol, 51 (14) ( 2017), pp. 7963-7971. DOI: 10.1021/acs.est.6b04702
[[6]]
L. Van Cauwenberghe, A. Vanreusel, J. Mees, C.R. Janssen. Microplastic pollution in deep-sea sediments. Environ Pollut, 182 ( 2013), pp. 495-499
[[7]]
A.A. Koelmans, M. Kooi, K.L. Law, E. van Sebille. All is not lost: deriving a top-down mass budget of plastic at sea. Environ Res Lett, 12 (11) ( 2017), p. 114028. DOI: 10.1088/1748-9326/aa9500
[[8]]
A.T. Kukkola, G. Senior, T. Maes, B. Silburn, A. Bakir, S. Kröger, et al.. A large-scale study of microplastic abundance in sediment cores from the UK continental shelf and slope. Mar Pollut Bull, 178 ( 2022), p. 113554
[[9]]
E.S. Jones, S.W. Ross, C.M. Robertson, C.M. Young. Distributions of microplastics and larger anthropogenic debris in Norfolk Canyon, Baltimore Canyon, and the adjacent continental slope ( Western North Atlantic Margin, U.S.A.). Mar Pollut Bull, 174 ( 2022), p. 113047
[[10]]
G. Peng, R. Bellerby, F. Zhang, X. Sun, D. Li. The ocean’s ultimate trashcan: hadal trenches as major depositories for plastic pollution. Water Res, 168 ( 2020), p. 115121
[[11]]
E.M. Cunningham, S.M. Ehlers, J.T.A. Dick, J.D. Sigwart, K. Linse, J.J. Dick, et al.. High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the Southern Ocean. Environ Sci Technol, 54 (21) ( 2020), pp. 13661-13671. DOI: 10.1021/acs.est.0c03441
[[12]]
D. Gola, P. Kumar Tyagi, A. Arya, N. Chauhan, M. Agarwal, S.K. Singh, et al.. The impact of microplastics on marine environment: a review. Environ Nanotechnol Monit Manag, 16 ( 2021), p. 100552
[[13]]
A. Stubbins, K.L. Law, S.E. Muñoz, T.S. Bianchi, L. Zhu. Plastics in the earth system. Science, 373 (6550) ( 2021), pp. 51-55. DOI: 10.1126/science.abb0354
[[14]]
M. Stabholz, X. Durrieu de Madron, M. Canals, A. Khripounoff, I. Taupier-Letage, P. Testor, et al.. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions. Biogeosciences, 10 (2) ( 2013), pp. 1097-1116. DOI: 10.5194/bg-10-1097-2013
[[15]]
L.D. Talley. Salinity patterns in the ocean-volume 1: the earth system: physical and chemical dimensions of global environmental change. M.C. MacCracken, J.S. Perry (Eds.), Encyclopediaof global change, John Wiley & Sons, Chichester, UK ( 2002), pp. 629-640
[[16]]
I.A. Kane, M.A. Clare, E. Miramontes, R. Wogelius, J.J. Rothwell, P. Garreau, et al.. Seafloor microplastic hotspots controlled by deep-sea circulation. Science, 368 (6495) ( 2020), pp. 1140-1145. DOI: 10.1126/science.aba5899
[[17]]
M. Canals, J.B. Company, D. Martin, A. Sanchez-Vidal, E. Ramirez-Llodra. Integrated study of Mediterranean deep canyons: novel results and future challenges preface. Prog Oceanogr, 118 ( 2013), pp. 1-27
[[18]]
X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, et al.. Microplastics contaminate the deepest part of the world’s ocean. Geochem Perspect Lett ( 2018), pp. 1-5. DOI: 10.7185/geochemlet.1829
[[19]]
L.C. Woodall, A. Sanchez-Vidal, M. Canals, G.L.J. Paterson, R. Coppock, V. Sleight, et al.. The deep sea is a major sink for microplastic debris. R Soc Open Sci, 1 (4) ( 2014), p. 140317. DOI: 10.1098/rsos.140317
[[20]]
A. Boetius, F. Wenzhofer. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci, 6 (9) ( 2013), pp. 725-734. DOI: 10.1038/ngeo1926
[[21]]
I. Leifer. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field. J Geophys Res Oceans, 115 (11) ( 2010), p. C11014
[[22]]
D.S. Wilson, I. Leifer, E. Maillard. Megaplume bubble process visualization by 3D multibeam sonar mapping. Mar Pet Geol, 68 ( 2015), pp. 753-765
[[23]]
I. Leifer, A. Judd. The UK22/4b blowout 20 years on: investigations of continuing methane emissions from sub-seabed to the atmosphere in a North Sea context. Mar Pet Geol, 68 ( 2015), pp. 706-717
[[24]]
W. Courtene-Jones, B. Quinn, S.F. Gary, A.O.M. Mogg, B.E. Narayanaswamy. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ Pollut, 231 (Pt 1) ( 2017), pp. 271-280
[[25]]
Z.L.R. Botterell, N. Beaumont, M. Cole, F.E. Hopkins, M. Steinke, R.C. Thompson, et al.. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals. Environ Sci Technol, 54 (19) ( 2020), pp. 12024-12033. DOI: 10.1021/acs.est.0c02715
[[26]]
M. MacLeod, H.P.H. Arp, M.B. Tekman, A. Jahnke. The global threat from plastic pollution. Science, 373 (6550) ( 2021), pp. 61-65. DOI: 10.1126/science.abg5433
[[27]]
A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, et al.. Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coast Shelf Sci, 130 ( 2013), pp. 54-61
[[28]]
M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M.B. Tekman, et al.. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ Sci Technol, 51 (19) ( 2017), pp. 11000-11010. DOI: 10.1021/acs.est.7b03331
[[29]]
A. Sanchez-Vidal, R.C. Thompson, M. Canals, W.P. de Haan, W.C. Chin. The imprint of microfibres in southern European deep seas. PLoS ONE, 13 (11) ( 2018), p. e0207033. DOI: 10.1371/journal.pone.0207033
[[30]]
J. Martin, A. Lusher, R.C. Thompson, A. Morley. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci Rep, 7 ( 2017), p. 10772
[[31]]
M. Niu, X. Fan, G. Zhuang, Q. Liang, F. Wang. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol Ecol, 93 (9) ( 2017), p. fix101
[[32]]
E.J. Beal, C.H. House, V.J. Orphan. Manganese- and iron-dependent marine methane oxidation. Science, 325 (5937) ( 2009), pp. 184-187. DOI: 10.1126/science.1169984
[[33]]
M. Bahram, S. Anslan, F. Hildebrand, P. Bork, L. Tedersoo. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ Microbiol Rep, 11 (4) ( 2019), pp. 487-494. DOI: 10.1111/1758-2229.12684
[[34]]
T. Rognes, T. Flouri, B. Nichols, C. Quince, F. Mahé. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4 ( 2016), p. e2584. DOI: 10.7717/peerj.2584
[[35]]
J. Kong, L. Wang, C. Lin, F. Kuang, X. Zhou, E.A. Laws, et al.. Contrasting community assembly mechanisms underlie similar biogeographic patterns of surface microbiota in the Tropical North Pacific Ocean. Microbiol Spectr, 10 (1) ( 2022), p. e0079821
[[36]]
P. Yilmaz, L.W. Parfrey, P. Yarza, J. Gerken, E. Pruesse, C. Quast, et al.. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res, 42 (D1) ( 2014), pp. D643-D648. DOI: 10.1093/nar/gkt1209
[[37]]
X. Sun, T. Wang, B. Chen, A.M. Booth, S. Liu, R. Wang, et al.. Factors influencing the occurrence and distribution of microplastics in coastal sediments: from source to sink. J Hazard Mater, 410 ( 2021), p. 124982
[[38]]
D. Brennecke, B. Duarte, F. Paiva, I. Cacador, J. Canning-Clode. Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci, 178 ( 2016), pp. 189-195
[[39]]
S. Yang, Y. Lv, X. Liu, Y. Wang, Q. Fan, Z. Yang, et al.. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea. Nat Commun, 11 (1) ( 2020), p. 3941
[[40]]
F. Civan. Chapter 5—porosity and permeability relationships of geological formations. F. Civan ( Ed.),Reservoir formation damage ( 2nd ed.), Gulf Professional Publishing, Burlington ( 2007), pp. 125-153
[[41]]
J. Barrett, Z. Chase, J. Zhang, M.M.B. Holl, K. Willis, A. Williams, et al.. Microplastic pollution in deep-sea sediments from the Great Australian Bight. Front Mar Sci, 7 ( 2020), p. 576170
[[42]]
L. Weiss, W. Ludwig, S. Heussner, M. Canals, J.F. Ghiglione, C. Estournel, et al.. The missing ocean plastic sink: gone with the rivers. Science, 373 (6550) ( 2021), pp. 107-111. DOI: 10.1126/science.abe0290
[[43]]
A.M. Booth, L. Sørensen. Microplastic fate and impacts in the environment. T. Rocha-Santos, M. Costa, C. Mouneyrac (Eds.), Handbook of microplastics in the environment, Springer International Publishing, Cham ( 2020), pp. 1-24. DOI: 10.1007/978-3-030-10618-8_29-1
[[44]]
C. Li, Y. Gan, C. Zhang, H. He, J. Fang, L. Wang, et al.. “Microplastic communities” in different environments: differences, links, and role of diversity index in source analysis. Water Res, 188 ( 2021), p. 116574
[[45]]
J. Li, B. Roche, J.M. Bull, P.R. White, T.G. Leighton, G. Provenzano, et al.. Broadband acoustic inversion for gas flux quantification—application to a methane plume at scanner pockmark, Central North Sea. J Geophys Res Oceans, 125 (9) ( 2020), Article e2020JC016360
[[46]]
Z. Wang, B. Su, X. Xu, D. Di, H. Huang, K. Mei, et al.. Preferential accumulation of small (< 300 μm) microplastics in the sediments of a coastal plain river network in eastern China. Water Res, 144 ( 2018), pp. 393-401
[[47]]
L. Van Cauwenberghe, L. Devriese, F. Galgani, J. Robbens, C.R. Janssen. Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res, 111 ( 2015), pp. 5-17
[[48]]
S.D. Ling, M. Sinclair, C.J. Levi, S.E. Reeves, G.J. Edgar. Ubiquity of microplastics in coastal seafloor sediments. Mar Pollut Bull, 121 (1-2) ( 2017), pp. 104-110
[[49]]
M.S. Reddy, S. Basha, S. Adimurthy, G. Ramachandraiah. Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard. India Estuar Coast Shelf Sci, 68 (3-4) ( 2006), pp. 656-660
[[50]]
S. Jahan, V. Strezov, H. Weldekidan, R. Kumar, T. Kan, S.A. Sarkodie, et al.. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci Total Environ, 695 ( 2019), p. 133924
[[51]]
C. Ioakeimidis, K.N. Fotopoulou, H.K. Karapanagioti, M. Geraga, C. Zeri, E. Papathanassiou, et al.. The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci Rep, 6 (1) ( 2016), p. 23501
[[52]]
G. Wang, J. Lu, W. Li, J. Ning, L. Zhou, Y. Tong, et al.. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. Ecotox Environ Safe, 208 ( 2021), p. 111477
[[53]]
J. Zhao, W. Ran, J. Teng, Y. Liu, H. Liu, X. Yin, et al.. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea. China Sci Total Environ, 640-1 ( 2018), pp. 637-645
[[54]]
L. Lei, S. Wu, S. Lu, M. Liu, Y. Song, Z. Fu, et al.. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ, 619-20 ( 2018), pp. 1-8
[[55]]
F. Wang, K.M. Shih, X.Y. Li. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119 ( 2015), pp. 841-847
[[56]]
A. Vanreusel, A. De Groote, S. Gollner, M. Bright, R.K.F. Unsworth. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS ONE, 5 (8) ( 2010), p. e12449. DOI: 10.1371/journal.pone.0012449
[[57]]
M. Angiolillo, O. Gérigny, T. Valente, M.C. Fabri, E. Tambute, E. Rouanet, et al.. Distribution of seafloor litter and its interaction with benthic organisms in deep waters of the Ligurian Sea (Northwestern Mediterranean). Sci Total Environ, 788 ( 2021), p. 147745
[[58]]
L.A. Levin, A.R. Baco, D.A. Bowden, A. Colaco, E.E. Cordes, M.R. Cunha, et al.. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci, 3 ( 2016), p. 72
[[59]]
Z.L.R. Botterell, N. Beaumont, T. Dorrington, M. Steinke, R.C. Thompson, P.K. Lindeque. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ Pollut, 245 ( 2019), pp. 98-110
[[60]]
A.F. Bernardino, L.A. Levin, A.R. Thurber, C.R. Smith, M. Medina. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE, 7 (4) ( 2012), p. e33515. DOI: 10.1371/journal.pone.0033515
[[61]]
C.D. Ruppel, J.D. Kessler. The interaction of climate change and methane hydrates. Rev Geophys, 55 (1) ( 2017), pp. 126-168

This research was financially supported by the National Natural Science Foundation of China (42022046), the National Key Research and Development Program of China (2021YFF0502300), the Key Special Project for Introduced Talent Teams of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0403 and GML2019ZD0401), and Guangdong Natural Resources Foundation (GDNRC[2022]45).

AI Summary AI Mindmap
PDF(2917 KB)

Accesses

Citations

Detail

Sections
Recommended

/