The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture

Shuhua Lin, Xuan Chen, Huimin Chen, Xixi Cai, Xu Chen, Shaoyun Wang

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 222-233.

PDF(2701 KB)
PDF(2701 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 222-233. DOI: 10.1016/j.eng.2022.08.011
Research
Review

The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture

Author information +
History +

Abstract

Strategies aimed at defining, discovering, and developing alternatives to traditional antibiotics will underlie the development of sustainable agricultural systems. Among such strategies, antimicrobial peptides (AMPs) with broad-spectrum antimicrobial activity and multifaceted mechanisms of action are recognized as ideal alternatives in the post-antibiotic era. In particular, AMPs derived from microbes with active metabolisms that can adapt to a variety of extreme environments have long been sought after. Consequently, this review summarizes information on naturally occurring AMPs, including their biological activity, antimicrobial mechanisms, and the preparation of microbial-derived AMPs; it also outlines their applications and the challenges presented by their use in the agroindustry. By dissecting the research results on microbial-derived AMPs of previous generations, this study contributes valuable knowledge on the exploration and realization of the applications of AMPs in sustainable agriculture.

Graphical abstract

Keywords

Antibiotic alternatives / Microbial-derived AMPs / Sustainable agricultural systems

Cite this article

Download citation ▾
Shuhua Lin, Xuan Chen, Huimin Chen, Xixi Cai, Xu Chen, Shaoyun Wang. The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture. Engineering, 2023, 27(8): 222‒233 https://doi.org/10.1016/j.eng.2022.08.011

References

[1]
D. Yong, M.A. Toleman, C.G. Giske, H.S. Cho, K. Sundman, K. Lee, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother, 53 (12) (2009), pp. 5046-5054.
[2]
Y.Y. Liu, Y. Wang, T.R. Walsh, L.X. Yi, R. Zhang, J. Spencer, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16 (2) (2016), pp. 161-168
[3]
D. Gu, N. Dong, Z. Zheng, D. Lin, M. Huang, L. Wang, et al. A fatal outbreak of ST 11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis, 18 (1) (2018), pp. 37-46.
[4]
B. Ma, C. Fang, L. Lu, M. Wang, X. Xue, Y. Zhou, et al. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nat Commun, 10 (1) (2019), p. 3517.
[5]
C.H. Chen, T.K. Lu. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics, 9 (1) (2020), p. 24
[6]
C.H. Chen, T. Bepler, K. Pepper, D. Fu, T.K. Lu. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol, 75 (2022), Article 102718.
[7]
A.R. Awan, B.A. Blount, D.J. Bell, W.M. Shaw, J.C.H. Ho, R.M. McKiernan, et al. Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun, 8 (2017), p. 15202.
[8]
M. Inoue. Total synthesis and functional analysis of non-ribosomal peptides. Chem Rec, 11 (5) (2011), pp. 284-294. DOI: 10.1002/tcr.201100014
[9]
R.D. Süssmuth, A. Mainz. Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl, 56 (14) (2017), pp. 3770-3821. DOI: 10.1002/anie.201609079
[10]
D.Y. Travin, Z.L. Watson, M. Metelev, F.R. Ward, I.A. Osterman, I.M. Khven, et al. Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nat Commun, 10 (2019), p. 4563.
[11]
J. Ma, H. Huang, Y. Xie, Z. Liu, J. Zhao, C. Zhang, et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat Commun, 8 (2017), p. 391
[12]
C. Covas, B. Almeida, A.C. Esteves, J. Lourenço, P. Domingues, T. Caetano, et al. Peptone from casein, an antagonist of nonribosomal peptide synthesis: a case study of pedopeptins produced by Pedobacter lusitanus NL19. N Biotechnol, 60 (2021), pp. 62-71.
[13]
A. Zipperer, M.C. Konnerth, C. Laux, A. Berscheid, D. Janek, C. Weidenmaier, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 535 (7613) (2016), pp. 511-516. DOI: 10.1038/nature18634
[14]
A. Kling, P. Lukat, D.V. Almeida, A. Bauer, E. Fontaine, S. Sordello, et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 348 (6239) (2015), pp. 1106-1112. DOI: 10.1126/science.aaa4690
[15]
K.R. Duncan, M. Crüsemann, A. Lechner, A. Sarkar, J. Li, N. Ziemert, et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol, 22 (4) (2015), pp. 460-471.
[16]
J. Santos-Aberturas, G. Chandra, L. Frattaruolo, R. Lacret, T.H. Pham, N.M. Vior, et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res, 47 (9) (2019), pp. 4624-4637. DOI: 10.1093/nar/gkz192
[17]
P.J. Rutledge, G.L. Challis. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol, 13 (8) (2015), pp. 509-523. DOI: 10.1038/nrmicro3496
[18]
S. Son, Y.S. Hong, M. Jang, K.T. Heo, B. Lee, J.P. Jang, et al. Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces species. J Nat Prod, 80 (11) (2017), pp. 3025-3031. DOI: 10.1021/acs.jnatprod.7b00660
[19]
J.P. Jang, T. Nogawa, Y. Futamura, T. Shimizu, D. Hashizume, S. Takahashi, et al. Octaminomycins A and B, cyclic octadepsipeptides active against Plasmodium falciparum. J Nat Prod, 80 (1) (2017), pp. 134-140. DOI: 10.1021/acs.jnatprod.6b00758
[20]
P. Bekiesch, M. Zehl, E. Domingo-Contreras, J. Martín, I. Pérez-Victoria, F. Reyes, et al. Viennamycins: lipopeptides produced by a Streptomyces sp. J Nat Prod, 83 (8) (2020), pp. 2381-2389. DOI: 10.1021/acs.jnatprod.0c00152
[21]
D. Drider, F. Bendali, K. Naghmouchi, M.L. Chikindas. Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins, 8 (4) (2016), pp. 177-182. DOI: 10.1007/s12602-016-9223-0
[22]
R.A. Flaherty, S.D. Freed, S.W. Lee.The wide world of ribosomally encoded bacterial peptides. PLoS Pathog, 10 (7) (2014), p. e1004221. DOI: 10.1371/journal.ppat.1004221
[23]
S. Soltani, R. Hammami, P.D. Cotter, S. Rebuffat, L.B. Said, H. Gaudreau, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev, 45 (1) (2021), Article fuaa039.
[24]
X. Pang, X. Song, M. Chen, S. Tian, Z. Lu, J. Sun, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf, 21 (2) (2022), pp. 1657-1676. DOI: 10.1111/1541-4337.12922
[25]
F.S. Youssef, M.L. Ashour, A.N.B. Singab, M. Wink.A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs, 17 (10) (2019), p. 559. DOI: 10.3390/md17100559
[26]
W. Hüttel. Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol, 105 (1) (2021), pp. 55-66. DOI: 10.1007/s00253-020-11022-y
[27]
J. Mattay, S. Houwaart, W. Hüttel. Cryptic production of trans-3-hydroxyproline in echinocandin B biosynthesis. Appl Environ Microbiol, 84 (7) (2018), pp. e02370-e10417
[28]
W.L. Shi, X.L. Chen, L.X. Wang, Z.T. Gong, S. Li, C.L. Li, et al. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot, 67 (8) (2016), pp. 2191-2205. DOI: 10.1093/jxb/erw023
[29]
D.F. Grigoletto, D.B.B. Trivella, A.G. Tempone, A. Rodrigues, A.M.L. Correia, S.P. Lira.Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Braz. J Microbiol, 51 (3) (2020), pp. 989-997. DOI: 10.1007/s42770-020-00270-9
[30]
Z. Li, X. Wang, X. Wang, D. Teng, R. Mao, Y. Hao, et al. Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem, 56 (2017), pp. 62-70.
[31]
T. Schneider, T. Kruse, R. Wimmer, I. Wiedemann, V. Sass, U. Pag, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science, 328 (5982) (2010), pp. 1168-1172. DOI: 10.1126/science.1185723
[32]
A. Essig, D. Hofmann, D. Münch, S. Gayathri, M. Künzler, P.T. Kallio, et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem, 289 (50) (2014), pp. 34953-34964.
[33]
J.S. Oeemig, C. Lynggaard, D.H. Knudsen, F.T. Hansen, K.D. Nørgaard, T. Schneider, et al. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem, 287 (50) (2012), pp. 42361-42372.
[34]
Y. Zhang, L. Zhou, Y. Liu, X. Zhao, X. Lian, J. Zhang, et al. A peptide from budding yeast GAPDH serves as a promising antifungal against Cryptococcus neoformans. Microbiol Spectr, 10 (1) (2022), p. e0082621
[35]
P. Branco, R. Coutinho, M. Malfeito-Ferreira, C. Prista, H. Albergaria. Wine spoilage control: impact of saccharomycin on Brettanomyces bruxellensis and its conjugated effect with sulfur dioxide. Microorganisms, 9 (12) (2021), p. 2528. DOI: 10.3390/microorganisms9122528
[36]
N. Landi, A. Clemente, P.V. Pedone, S. Ragucci, A. DiMaro. An updated review of bioactive peptides from mushrooms in a well-defined molecular weight range. Toxins, 14 (2) (2022), p. 84. DOI: 10.3390/toxins14020084
[37]
F. Guzmán, G. Wong, T. Román, C. Cárdenas, C. Alvárez, P. Schmitt, et al. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) butcher and bactericidal activity improvement. Mar Drugs, 17 (8) (2019), p. 453. DOI: 10.3390/md17080453
[38]
B.D.A.F. Brasil, F.G. de Siqueira, T.F.C. Salum, C.M. Zanette, M.R. Spier. Microalgae and cyanobacteria as enzyme biofactories. Algal Res, 25 (2017), pp. 76-89.
[39]
D. MubarakAli, J. MohamedSaalis, R. Sathya, N. Irfan, J.W. Kim. An evidence of microalgal peptides to target spike protein of COVID-19: in silico approach. Microb Pathog, 160 (2021), p. 160105189
[40]
S.S. Swain, S.K. Paidesetty, R.N. Padhy. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother, 90 (2017), pp. 760-776.
[41]
Y. Mi, J. Zhang, S. He, X. Yan.New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar Drugs, 15 (5) (2017), p. 132. DOI: 10.3390/md15050132
[42]
S. Hassan, R. Meenatchi, K. Pachillu, S. Bansal, P. Brindangnanam, J. Arockiaraj, et al. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol, 62 (9) (2022), pp. 999-1029. DOI: 10.1002/jobm.202100477
[43]
J. Vestola, T.K. Shishido, J. Jokela, D.P. Fewer, O. Aitio, P. Permi, et al. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci USA, 111 (18) (2014), pp. E1909-E1917.
[44]
J. Almaliti, K.L. Malloy, E. Glukhov, C. Spadafora, M. Gutiérrez, W.H. Gerwick. Dudawalamides A-D, antiparasitic cyclic depsipeptides from the marine cyanobacterium Moorea producens. J Nat Prod, 80 (6) (2017), pp. 1827-1836. DOI: 10.1021/acs.jnatprod.7b00034
[45]
A. Fidor, R. Konkel, H. Mazur-Marzec.Bioactive peptides produced by cyanobacteria of the genus Nostoc: a review. Mar Drugs, 17 (10) (2019), p. 561. DOI: 10.3390/md17100561
[46]
A.Z. Ujvárosi, K. Hercog, M. Riba, S. Gonda, M. Filipič, G. Vasas, et al. The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere, 240 (2020), Article 124880.
[47]
M. Essack, H.S. Alzubaidy, V.B. Bajic, J.A. Archer. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins, 6 (11) (2014), pp. 3058-3076. DOI: 10.3390/toxins6113058
[48]
S. Agrawal, D. Acharya, A. Adholeya, C.J. Barrow, S.K. Deshmukh. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol, 8 (2017), p. 828.
[49]
F.S. Tareq, J.H. Kim, M.A. Lee, H.S. Lee, Y.J. Lee, J.S. Lee, et al. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis. Org Lett, 14 (6) (2012), pp. 1464-1467. DOI: 10.1021/ol300202z
[50]
J. Wang, Y.M. Liu, W. Cao, K.W. Yao, Z.Q. Liu, J.Y. Guo. Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis, 27 (2) (2012), pp. 159-165
[51]
Y. Valero, M. Saraiva-Fraga, B. Costas, F.A. Guardiola. Antimicrobial peptides from fish: beyond the fight against pathogens. Rev Aquacult, 12 (1) (2020), pp. 224-253. DOI: 10.1111/raq.12314
[52]
O. Kepp, G. Kroemer. Autophagy induction by thiostrepton for the improvement of anticancer therapy. Autophagy, 16 (6) (2020), pp. 1166-1167. DOI: 10.1080/15548627.2020.1758417
[53]
J. Zhang, J. Zhong. The journey of nisin development in China, a natural-green food preservative. Protein Cell, 6 (10) (2015), pp. 709-711. DOI: 10.1007/s13238-015-0214-9
[54]
A. Cannatelli, S. Principato, O.L. Colavecchio, L. Pallecchi, G.M. Rossolini. Synergistic activity of colistin in combination with resveratrol against colistin-resistant Gram-negative pathogens. Front Microbiol, 9 (2018), p. 1808.
[55]
C.L. Lopez-Pena, D.J. McClements. Impact of a food-grade cationic biopolymer (ε-polylysine) on the digestion of emulsified lipids: in vitro study. Food Res Int, 75 (2015), pp. 34-40.
[56]
S. Wang, H. Zheng, L. Zhou, F. Cheng, Z. Liu, H. Zhang, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett, 20 (7) (2020), pp. 5149-5158. DOI: 10.1021/acs.nanolett.0c01371
[57]
K.C. Nicolaou. How thiostrepton was made in the laboratory. Angew Chem Int Ed Engl, 51 (50) (2012), pp. 12414-12436. DOI: 10.1002/anie.201205576
[58]
Y. Lai, R.L. Gallo. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 30 (3) (2009), pp. 131-141.
[59]
A.T.Y. Yeung, S.L. Gellatly, R.E. Hancock. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci, 68 (13) (2011), pp. 2161-2176. DOI: 10.1007/s00018-011-0710-x
[60]
L.H. Mahdi, H.S. Jabbar, I.G. Auda. Antibacterial immunomodulatory and antibiofilm triple effect of salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. Int J Biol Macromol, 134 (2019), pp. 1132-1144.
[61]
J.C. Hernández-González, A. Martínez-Tapia, G. Lazcano-Hernández, B.E. García-Pérez, N.S. Castrejón-Jiménez. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11 (4) (2021), p. 979. DOI: 10.3390/ani11040979
[62]
T.M. Der Torossian, C. de la Fuente-Nunez. Reprogramming biological peptides to combat infectious diseases. Chem Commun, 55 (100) (2019), pp. 15020-15032
[63]
A. Jenab, R. Roghanian, G. Emtiazi. Bacterial natural compounds with anti-inflammatory and immunomodulatory properties (mini review). Drug Des Devel Ther, 14 (2020), pp. 3787-3801. DOI: 10.2147/dddt.s261283
[64]
Y. Zhang, C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, et al. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation, 38 (2) (2015), pp. 756-764. DOI: 10.1007/s10753-014-9986-y
[65]
C. Rüter, C. Buss, J. Scharnert, G. Heusipp, M.A. Schmidt. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J Cell Sci, 123 (13) (2010), pp. 2190-2198. DOI: 10.1242/jcs.063016
[66]
H. Yu, X. Ding, L. Shang, X. Zeng, H. Liu, N. Li, et al. Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia coli-induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 cells. Front Cell Infect Microbiol, 8 (2018), p. 242
[67]
M. Malvisi, M. Stuknytė, G. Magro, G. Minozzi, A. Giardini, I. De Noni, et al. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J Dairy Sci, 99 (3) (2016), pp. 2288-2296. DOI: 10.3168/jds.2015-10161
[68]
A.G. Laman, R. Lathe, G.V. Savinov, A.O. Shepelyakovskaya, K.M. Boziev, L.K. Baidakova, et al. Innate immunity: bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1. FEBS Lett, 589 (15) (2015), pp. 1819-1824. DOI: 10.1016/j.febslet.2015.05.028
[69]
X. Dou, X. Zhu, J. Wang, N. Dong, A. Shan. Novel design of heptad amphiphiles to enhance cell selectivity, salt resistance, antibiofilm properties and their membrane-disruptive mechanism. J Med Chem, 60 (6) (2017), pp. 2257-2270. DOI: 10.1021/acs.jmedchem.6b01457
[70]
M.S. Islam, G. Mohamed, S.A. Polash, M.A. Hasan, R. Sultana, N. Saiara, et al. Antimicrobial peptides from plants: a cDNA-library based isolation, purification, characterization approach and elucidating their modes of action. Int J Mol Sci, 22 (16) (2021), p. 8712. DOI: 10.3390/ijms22168712
[71]
L.T. Nguyen, E.F. Haney, H.J. Vogel. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 29 (9) (2011), pp. 464-472.
[72]
T. Tuersuntuoheti, Z. Wang, Z. Wang, S. Liang, X. Li, M. Zhang. Review of the application of ε-poly-L-lysine in improving food quality and preservation. J Food Process Preserv, 43 (10) (2019), p. e14153.
[73]
Q. Zhang, Z. Yan, Y. Meng, X. Hong, G. Shao, J. Ma, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res, 8 (1) (2021), p. 48. DOI: 10.1145/3460421.3478824
[74]
F. Yoneyama, Y. Imura, K. Ohno, T. Zendo, J. Nakayama, K. Matsuzaki, et al. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother, 53 (8) (2009), pp. 3211-3217.
[75]
G. Liu, Z. Song, X. Yang, Y. Gao, C. Wang, B. Sun. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control, 62 (2016), pp. 62309-62316
[76]
A.A. Sobko, E.A. Kotova, Y.N. Antonenko, S.D. Zakharov, W.A. Cramer. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett, 576 (1-2) (2004), pp. 205-210. DOI: 10.1016/j.febslet.2004.09.016
[77]
S. Zhang, L. Luo, X. Sun, A. Ma. Bioactive peptides: a promising alternative to chemical preservatives for food preservation. J Agric Food Chem, 69 (42) (2021), pp. 12369-12384. DOI: 10.1021/acs.jafc.1c04020
[78]
Y. Yan, Y. Li, Z. Zhang, X. Wang, Y. Niu, S. Zhang, et al. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces, 202 (2021), Article 111682.
[79]
Z. Su, M. Shodiev, J.J. Leitch, F. Abbasi, J. Lipkowski. Role of transmembrane potential and defects on the permeabilization of lipid bilayers by alamethicin, an ion-channel-forming peptide. Langmuir, 34 (21) (2018), pp. 6249-6260. DOI: 10.1021/acs.langmuir.8b00928
[80]
O.G. Travkova, H. Moehwald, G. Brezesinski. The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci, 247 (2017), pp. 521-532.
[81]
Y. Wang, K. Feng, H. Yang, Z. Zhang, Y. Yuan, T. Yue. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front Microbiol, 9 (2018), p. 597
[82]
C. Roces, P. Courtin, S. Kulakauskas, A. Rodríguez, M.P. Chapot-Chartier, B. Martínez. Isolation of Lactococcus lactis mutants simultaneously resistant to the cell wall-active bacteriocin Lcn972, lysozyme, nisin, and bacteriophage c2. Appl Environ Microbiol, 78 (12) (2012), pp. 4157-4163.
[83]
C. Madera, P. García, A. Rodríguez, J.E. Suárez, B. Martínez.Prophage induction in Lactococcus lactis by the bacteriocin lactococcin 972. Int J Food Microbiol, 129 (1) (2009), pp. 99-102.
[84]
B. Martínez, T. Böttiger, T. Schneider, A. Rodríguez, H.G. Sahl, I. Wiedemann.Specific interaction of the unmodified bacteriocin lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol, 74 (15) (2008), pp. 4666-4670.
[85]
Y. Héchard, H.G. Sahl. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84 (5-6) (2002), pp. 545-557.
[86]
D. Münch, A. Müller, T. Schneider, B. Kohl, M. Wenzel, J.E. Bandow, et al. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem, 289 (17) (2014), pp. 12063-12076
[87]
J. Reiners, M. Lagedroste, J. Gottstein, E.T. Adeniyi, R. Kalscheuer, G. Poschmann, et al. Insights in the antimicrobial potential of the natural nisin variant nisin H. Front Microbiol, 11 (2020), Article 573614.
[88]
Z. Sun, J. Zhong, X. Liang, J. Liu, X. Chen, L. Huan. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother, 53 (5) (2009), pp. 1964-1973.
[89]
M. Kawada-Matsuo, A. Watanabe, K. Arii, Y. Oogai, K. Noguchi, S. Miyawaki, et al. Staphylococcus aureus virulence affected by an alternative nisin a resistance mechanism. Appl Environ Microbiol, 86 (8) (2020), pp. e02923-e3019
[90]
J.C. Barbosa, S. Gonçalves, M. Makowski, Í.C. Silva, T. Caetano, T. Schneider, et al. Insights into the mode of action of the two-peptide lantibiotic lichenicidin. Colloids Surf B Biointerfaces, 211 (2022), Article 112308.
[91]
J. Zaschke-Kriesche, L.V. Behrmann, J. Reiners, M. Lagedroste, Y. Gröner, R. Kalscheuer, et al. Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem, 27 (15) (2019), pp. 3454-3462.
[92]
T.J. Oman, T.J. Lupoli, T.S.A. Wang, D. Kahne, S. Walker, W.A. van der Donk. Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J Am Chem Soc, 133 (44) (2011), pp. 17544-17547. DOI: 10.1021/ja206281k
[93]
A. Bakhtiary, S.A. Cochrane, P. Mercier, R.T. McKay, M. Miskolzie, C.S. Sit, et al. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J Am Chem Soc, 139 (49) (2017), pp. 17803-17810. DOI: 10.1021/jacs.7b04728
[94]
P.D. Cotter, R.P. Ross, C. Hill. Bacteriocins—a viable alternative to antibiotics?. Nat Rev Microbiol, 11 (2) (2013), pp. 95-105. DOI: 10.1038/nrmicro2937
[95]
M. Metelev, M. Serebryakova, D. Ghilarov, Y. Zhao, K. Severinov. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol, 195 (18) (2013), pp. 4129-4137.
[96]
S. Cociancich, A. Pesic, D. Petras, S. Uhlmann, J. Kretz, V. Schubert, et al. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat Chem Biol, 11 (3) (2015), pp. 195-197. DOI: 10.1038/nchembio.1734
[97]
M. Fredersdorf, M. Kurz, A. Bauer, M.O. Ebert, C. Rigling, L. Lannes, et al. Conformational analysis of an antibacterial cyclodepsipeptide active against Mycobacterium tuberculosis by a combined ROE and RDC analysis. Chemistry, 23 (24) (2017), pp. 5729-5735. DOI: 10.1002/chem.201605143
[98]
A. Radaic, M.B. de Jesus, Y.L. Kapila. Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release, 321 (2020), pp. 100-118.
[99]
C.F. Le, C.M. Fang, S.D. Sekaran. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother, 61 (4) (2017), pp. e02340-e10416
[100]
C.J. Schwalen, G.A. Hudson, B. Kille, D.A. Mitchell. Bioinformatic expansion and discovery of thiopeptide antibiotics. J Am Chem Soc, 140 (30) (2018), pp. 9494-9501. DOI: 10.1021/jacs.8b03896
[101]
J.P. Gomez-Escribano, L. Song, M.J. Bibb, G.L. Challis. Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem Sci, 3 (12) (2012), pp. 3522-3525. DOI: 10.1039/c2sc21183a
[102]
L. Pantel, T. Florin, M. Dobosz-Bartoszek, E. Racine, M. Sarciaux, M. Serri, et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell, 70 (1) (2018), pp. 83-94.
[103]
P.J.P. Espitia, N. de Fátima Ferreira Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros. Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf, 11 (2) (2012), pp. 187-204
[104]
L. Wang, N. Wang, W. Zhang, X. Cheng, Z. Yan, G. Shao, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther, 7 (1) (2022), p. 48. DOI: 10.56028/aemr.1.1.48
[105]
S. Kim, I. Wijesekara. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods, 2 (1) (2010), pp. 1-9
[106]
A.S. Akalın. Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci Technol, 36 (2) (2014), pp. 79-95
[107]
D. Agyei, M.K. Danquah. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv, 29 (3) (2011), pp. 272-277.
[108]
S.A. Cunha, M.E. Pintado. Bioactive peptides derived from marine sources: biological and functional properties. Trends Food Sci Technol, 119 (2022), pp. 348-370.
[109]
R.J.S. de Castro, H.H. Sato. Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int, 74 (2015), pp. 185-198.
[110]
K. Ryder, B. AeD, M. McConnell, A. Carne. Towards generation of bioactive peptides from meat industry waste proteins: generation of peptides using commercial microbial proteases. Food Chem, 208 (2016), pp. 42-50.
[111]
Y. Sun, R. Chang, Q. Li, B. Li. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol, 242 (5) (2016), pp. 685-692. DOI: 10.1007/s00217-015-2576-x
[112]
C.A. Ovando, J. Carvalho, G.V. de Melo Pereira, P. Jacques, V.T. Soccol, C.R. Soccol. Functional properties and health benefits of bioactive peptides derived from Spirulina: a review. Food Res Int, 34 (1) (2018), pp. 34-51. DOI: 10.1080/87559129.2016.1210632
[113]
A.S. Oliveira, C. Ferreira, J.O. Pereira, M.E. Pintado, A.P. Carvalho. Spent brewer’s yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: an overview. Int J Biol Macromol, 208 (2022), pp. 1116-1126.
[114]
Y. Cui, L. Luo, X. Wang, Y. Lu, Y. Yi, Y. Shan, et al. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: a review. Compr Rev Food Sci Food Saf, 20 (1) (2021), pp. 863-899. DOI: 10.1111/1541-4337.12658
[115]
D. Wibowo, C.X. Zhao. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol, 103 (2) (2019), pp. 659-671. DOI: 10.1007/s00253-018-9524-1
[116]
C. Zhang, M.R. Seyedsayamdost. Discovery of a cryptic depsipeptide from Streptomyces ghanaensis via MALDI-MS-guided high-throughput elicitor screening. Angew Chem Int Ed Engl, 59 (51) (2020), pp. 23005-23009. DOI: 10.1002/anie.202009611
[117]
V. Tracanna, A. de Jong, M.H. Medema, O.P. Kuipers. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev, 41 (3) (2017), pp. 417-429. DOI: 10.1093/femsre/fux014
[118]
B.M. Hover, S.H. Kim, M. Katz, Z. Charlop-Powers, J.G. Owen, M.A. Ternei, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol, 3 (4) (2018), pp. 415-422. DOI: 10.1038/s41564-018-0110-1
[119]
K. Kim, D. Choe, D.H. Lee, B.K. Cho.Engineering biology to construct microbial chassis for the production of difficult-to-express proteins. Int J Mol Sci, 21 (3) (2020), p. 990. DOI: 10.3390/ijms21030990
[120]
H. Ishida, L.T. Nguyen, R. Gopal, T. Aizawa, H.J. Vogel. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J Am Chem Soc, 138 (35) (2016), pp. 11318-11326. DOI: 10.1021/jacs.6b06781
[121]
A.S. Pina, C.R. Lowe, A.C.A. Roque. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv, 32 (2) (2014), pp. 366-381.
[122]
A. Mejía-Pitta, E. Broset, C. de la Fuente-Nunez. Probiotic engineering strategies for the heterologous production of antimicrobial peptides. Adv Drug Deliv Rev, 176 (2021), Article 113863.
[123]
J. Cao, C. de la Fuente-Nunez, R.W. Ou, M.T. Torres, S.G. Pande, A.J. Sinskey, et al. Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol, 7 (3) (2018), pp. 896-902. DOI: 10.1021/acssynbio.7b00396
[124]
M. Ahmad, M. Hirz, H. Pichler, H. Schwab. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol, 98 (12) (2014), pp. 5301-5317. DOI: 10.1007/s00253-014-5732-5
[125]
S. Deo, K.L. Turton, T. Kainth, A. Kumar, H.J. Wieden. Strategies for improving antimicrobial peptide production. Biotechnol Adv, 59 (2022), Article 107968.
[126]
B.H. Gan, J. Gaynord, S.M. Rowe, T. Deingruber, D.R. Spring. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev, 50 (13) (2021), pp. 7820-7880. DOI: 10.1039/d0cs00729c
[127]
J.C.P. Santos, R.C.S. Sousa, C.G. Otoni, A.R.F. Moraes, V.G.L. Souza, E.A.A. Medeiros, et al. Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol, 48 (2018), pp. 48179-48194
[128]
Y. Liu, D.E. Sameen, S. Ahmed, J. Dai, W. Qin. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol, 112 (2021), pp. 471-483
[129]
M. Rai, R. Pandit, S. Gaikwad, G. Kövics. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol, 53 (9) (2016), pp. 3381-3394. DOI: 10.1007/s13197-016-2318-5
[130]
Z. Wu, Y. Li, L. Zhang, Z. Ding, G. Shi. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol, 14 (6) (2021), pp. 2257-2278. DOI: 10.1111/1751-7915.13743
[131]
A.C. Ross, H. Liu, V.R. Pattabiraman, J.C. Vederas. Synthesis of the lantibiotic lactocin S using peptide cyclizations on solid phase. J Am Chem Soc, 132 (2) (2010), pp. 462-463. DOI: 10.1021/ja9095945
[132]
M. Erdem Büyükkiraz, Z. Kesmen. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol, 132 (3) (2022), pp. 1573-1596. DOI: 10.1111/jam.15314
[133]
D. Józefiak, A. Sip, A. Rutkowski, M. Rawski, S. Kaczmarek, M. Wołuń-Cholewa, et al. Lyophilized Carnobacterium divergens AS 7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poult Sci, 91 (8) (2012), pp. 1899-1907. DOI: 10.3382/ps.2012-02151
[134]
A. Maldonado-Barragán, N. Cárdenas, B. Martínez, J.L. Ruiz-Barba, J.F. Fernández-Garayzábal, J.M. Rodríguez, et al. Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol, 79 (14) (2013), pp. 4336-4346. DOI: 10.1128/AEM.00830-13
[135]
X. Li, R. Jaafar, Y. He, B. Wu, P. Kania, K. Buchmann. Effects of a Pseudomonas H6 surfactant on rainbow trout and Ichthyophthirius multifiliis: in vivo exposure. Aquaculture, 547 (2022), Article 737479.
[136]
S. Wang, X.F. Zeng, Q.W. Wang, J.L. Zhu, Q. Peng, C.L. Hou, et al. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers. J Anim Sci, 93 (10) (2015), pp. 4750-4760. DOI: 10.2527/jas.2015-9284
[137]
H.T. Wang, C. Yu, Y.H. Hsieh, S.W. Chen, B.J. Chen, C.Y. Chen. Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens—its potential role as an alternative to feed antibiotics. J Sci Food Agric, 91 (13) (2011), pp. 2338-2343.
[138]
Y. Huan, Q. Kong, H. Mou, H. Yi. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol, 11 (2020), Article 582779.
[139]
A. Lauková, L. Chrastinová, I. Plachá, A. Kandričáková, R. Szabóová, V. Strompfová, et al. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob Proteins, 6 (1) (2014), pp. 41-46. DOI: 10.1007/s12602-014-9156-4
[140]
J. Hu, L. Ma, Y. Nie, J. Chen, W. Zheng, X. Wang, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe, 24 (6) (2018), pp. 817-832.
[141]
S.A. Cutler, S.M. Lonergan, N. Cornick, A.K. Johnson, C.H. Stahl. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrob Agents Chemother, 51 (11) (2007), pp. 3830-3835.
[142]
H.T. Wang, Y.H. Li, I.P. Chou, Y.H. Hsieh, B.J. Chen, C.Y. Chen. Albusin B modulates lipid metabolism andincreases antioxidant defense in broilerchickens by a proteomic approach. J Sci Food Agric, 93 (2) (2013), pp. 284-292. DOI: 10.1002/jsfa.5754
[143]
J.E. Barboza-Corona, N. de la Fuente-Salcido, N. Alva-Murillo, A. Ochoa-Zarzosa, J.E. López-Meza. Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet Microbiol, 138 (1-2) (2009), pp. 179-183.
[144]
H. Zhao, D. Shao, C. Jiang, J. Shi, Q. Li, Q. Huang, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol, 101 (15) (2017), pp. 5951-5960. DOI: 10.1007/s00253-017-8396-0
[145]
W.M. Rooney, R. Chai, J.J. Milner, D. Walker. Bacteriocins targeting Gram-negative phytopathogenic bacteria: plantibiotics of the future. Front Microbiol, 11 (2020), Article 575981.
[146]
X. Han, D. Shen, Q. Xiong, B. Bao, W. Zhang, T. Dai, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB 42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl Environ Microbiol, 87 (23) (2021), pp. e01601-e2021
[147]
Z. Ma, M. Ongena, M. Höfte. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep, 36 (11) (2017), pp. 1731-1746. DOI: 10.1007/s00299-017-2187-z
[148]
Q. Gu, Y. Yang, Q. Yuan, G. Shi, L. Wu, Z. Lou, et al. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol, 83 (19) (2017), pp. e01075-e10117
[149]
W.J. Jung, F. Mabood, A. Souleimanov, D.L. Smith. Induction of defense-related enzymes in soybean leaves by class IId bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains. Microbiol Res, 167 (1) (2011), pp. 14-19.
[150]
C. Zachow, G. Jahanshah, I. de Bruijn, C. Song, F. Ianni, Z. Pataj, et al. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1- 14 is involved in pathogen suppression and root colonization. Mol Plant Microbe Interact, 28 (7) (2015), pp. 800-810.
[151]
S. Lei, H. Zhao, B. Pang, R. Qu, Z. Lian, C. Jiang, et al. Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol, 103 (11) (2019), pp. 4377-4392. DOI: 10.1007/s00253-019-09805-z
[152]
J. Xiao, X. Guo, X. Qiao, X. Zhang, X. Chen, D. Zhang.Activity of fengycin and iturin a isolated from Bacillus subtilis Z-14 on Gaeumannomyces graminis var. tritici and soil microbial diversity. Front Microbiol, 12 (2021), p. 682437.
[153]
D.B. Medeot, M. Fernandez, G.M. Morales, E. Jofré.Fengycins from Bacillus amyloliquefaciens MEP(2)18 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol, 10 (2019), p. 103107
[154]
C. Yu, X. Liu, X. Zhang, M. Zhang, Y. Gu, Q. Ali, et al. Mycosubtilin produced by Bacillus subtilis ATCC 6633 inhibits growth and mycotoxin biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins, 13 (11) (2021), p. 791. DOI: 10.3390/toxins13110791
[155]
A. Príncipe, M. Fernandez, M. Torasso, A. Godino, S. Fischer. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res, 212-213 (2018), pp. 94-102.
[156]
K.M.J. de Mattos-Shipley, C. Greco, D.M. Heard, G. Hough, N.P. Mulholland, J.L. Vincent, et al. The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis. Chem Sci, 9 (17) (2018), pp. 4109-4117. DOI: 10.1039/c8sc00717a
[157]
J. Bi, C. Tian, J. Jiang, G. Zhang, H. Hao, H. Hou. Antibacterial activity and potential application in food packaging of peptides derived from turbot viscera hydrolysate. J Agric Food Chem, 68 (37) (2020), pp. 9968-9977. DOI: 10.1021/acs.jafc.0c03146
[158]
L. Fu, C. Wang, X. Ruan, G. Li, Y. Zhao, Y. Wang. Preservation of large yellow croaker (Pseudosciaena crocea) by coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. Int J Food Microbiol, 266 (2018), pp. 60-68.
[159]
X. Lv, Y. Lin, Y. Jie, M. Sun, B. Zhang, F. Bai, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL 3 from Chinese Suan-Tsai. Eur Food Res Technol, 244 (2) (2018), pp. 323-331. DOI: 10.1007/s00217-017-2958-3
[160]
M.A. Maky, N. Ishibashi, T. Zendo, R.H. Perez, J.R. Doud, M. Karmi, et al. Enterocin F4-9, a novel O-linked glycosylated bacteriocin. Appl Environ Microbiol, 81 (14) (2015), pp. 4819-4826.
[161]
H. Jiang, J. Zou, H. Cheng, J. Fang, G. Huang. Purification, characterization, and mode of action of pentocin JL-1, a novel bacteriocin isolated from Lactobacillus pentosus, against drug-resistant Staphylococcus aureus. BioMed Res Int, 2017 ( 2017), p. 7657190.
[162]
B. Ramos, T.R.S. Brandão, P. Teixeira, C.L.M. Silva. Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol, 85 (2020), Article 103282.
[163]
L. Chopra, G. Singh, K.K. Jena, D.K. Sahoo. Sonorensin: a new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep, 5 (1) (2015), p. 13412.
[164]
B. Halimi, C. Dortu, A. Arguelles-Arias, P. Thonart, B. Joris, P. Fickers. Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Proteins, 2 (2) (2010), pp. 120-125. DOI: 10.1007/s12602-010-9040-9
[165]
J. Zhang, G. Liu, P. Li, Y. Qu. Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control, 21 (2) (2010), pp. 198-202.
[166]
X. Lv, H. Ma, M. Sun, Y. Lin, F. Bai, J. Li, et al. A novel bacteriocin DY4- 2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control, 89 ( 2018), pp. 8922-8931
[167]
A.R. Sarika, A.P. Lipton, M.S. Aishwarya. Biopreservative efficacy of bacteriocin GP1 of Lactobacillus rhamnosus GP1 on stored fish filets. Front Nutr, 6 ( 2019), p. 29.
[168]
L. Toral, M. Rodríguez, V. Béjar, I. Sampedro. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol, 9 ( 2018), p. 1315.
[169]
N. Jia, Y. Xie, H. Zhang, H. Liu, J. Feng, L. Zhu, et al. Effect of bacteriocin treatment on storage and quality of postharvest strawberry fruit. Adv Mat Res, 554-556 (2012), pp. 1547-1552.
[170]
P. Tan, H. Fu, X. Ma. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today, 39 (2021), Article 101229.
AI Summary AI Mindmap
PDF(2701 KB)

Accesses

Citations

Detail

Sections
Recommended

/