A General Strategy to Electrospin Nanofibers with Ultrahigh Molecular Chain Orientation

Xian Wen, Jian Xiong, Zhaoyang Sun, Liming Wang, Jianyong Yu, Xiaohong Qin

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 179-187.

PDF(2543 KB)
PDF(2543 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 179-187. DOI: 10.1016/j.eng.2022.09.008
Research
Article

A General Strategy to Electrospin Nanofibers with Ultrahigh Molecular Chain Orientation

Author information +
History +

Abstract

The degree of polymer chain orientation is a key structural parameter that determines the mechanical and physical properties of fibers. However, understanding and significantly tuning the orientation of fiber macromolecular chains remain elusive. Herein, we propose a novel electrospinning technique that can efficiently modulate molecular chain orientation by controlling the electric field. In contrast to the typical electrospinning method, this technique can piecewise control the electric field by applying high voltage to the metal ring instead of the needle. Benefiting from this change, a new electric field distribution can be realized, leading to a non-monotonic change in the drafting force. As a result, the macromolecular chain orientation of polyethylene oxide (PEO) nanofibers was significantly improved with a record-high infrared dichroic ratio. This was further confirmed by the sharp decrease in the PEO jet fineness of approximately 80% and the nanofiber diameter from 298 to 114 nm. Interestingly, the crystallinity can also be adjusted, with an obvious drop from 74.9% to 31.7%, which is different from the high crystallinity caused by oriented chains in common materials. This work guides a new perspective for the preparation of advanced electrospun nanofibers with optimal orientation-crystallinity properties, a merited feature for various applications.

Graphical abstract

Keywords

Molecular orientation / Electrospinning / Nanofibers / Electric field / Polyethylene oxide

Cite this article

Download citation ▾
Xian Wen, Jian Xiong, Zhaoyang Sun, Liming Wang, Jianyong Yu, Xiaohong Qin. A General Strategy to Electrospin Nanofibers with Ultrahigh Molecular Chain Orientation. Engineering, 2023, 29(10): 179‒187 https://doi.org/10.1016/j.eng.2022.09.008

References

[1]
D. Papkov, Y. Zou, M.N. Andalib, A. Goponenko, S.Z.D. Cheng, Y.A. Dzenis. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano, 7 (4) ( 2013), pp. 3324-3331. DOI: 10.1021/nn400028p
[2]
D. Papkov, C. Pellerin, Y.A. Dzenis. Polarized Raman analysis of polymer chain orientation in ultrafine individual nanofibers with variable low crystallinity. Macromolecules, 51 (21) ( 2018), pp. 8746-8751. DOI: 10.1021/acs.macromol.8b01869
[3]
L. Deng, G. Chen. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance. Nano Energy, 80 ( 2021), p. 105448
[4]
Y. Liu, C. Pellerin. Highly oriented electrospun fibers of self-assembled inclusion complexes of poly(ethylene oxide) and urea. Macromolecules, 39 (26) ( 2006), pp. 8886-8888. DOI: 10.1021/ma0625408
[5]
T. Kongkhlang, K. Tashiro, M. Kotaki, S. Chirachanchai. Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc, 130 (46) ( 2008), pp. 15460-15466. DOI: 10.1021/ja804185s
[6]
A.W. Laramée, C. Lanthier, C. Pellerin. Electrospinning of highly crystalline polymers for strongly oriented fibers. ACS Appl Polym Mater, 2 (11) ( 2020), pp. 5025-5032. DOI: 10.1021/acsapm.0c00873
[7]
Y. Yang, X. Li, J. Mi, S. Ramakrishna, D. Ji, J. Yu, et al.. Coordinating chain crystallinity and orientation by tailoring electrical stretching for fabrication of super-tough and strong organic fibers. Chem Eng J, 442 ( 2022), p. 136203
[8]
J. Xue, T. Wu, Y. Dai, Y. Xia. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev, 119 (8) ( 2019), pp. 5298-5415. DOI: 10.1021/acs.chemrev.8b00593
[9]
M. Richard-Lacroix, C. Pellerin. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules, 46 (24) ( 2013), pp. 9473-9493. DOI: 10.1021/ma401681m
[10]
D. Papkov, N. Delpouve, L. Delbreilh, S. Araujo, T. Stockdale, S. Mamedov, et al.. Quantifying polymer chain orientation in strong and tough nanofibers with low crystallinity: toward next generation nanostructured superfibers. ACS Nano, 13 (5) ( 2019), pp. 4893-4927. DOI: 10.1021/acsnano.8b08725
[11]
X. Wen, J. Xiong, S.L. Lei, L.M. Wang, X.H. Qin. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications. Adv Fiber Mater, 4 (2) ( 2022), pp. 145-161. DOI: 10.1007/s42765-021-00113-8
[12]
F. Fang, H. Wang, H. Wang, W.M. Huang, Y. Chen, N. Cai, et al.. Stimulus-responsive shrinkage in electrospun membranes: fundamentals and control. Micromachines, 12 (8) ( 2021), p. 920. DOI: 10.3390/mi12080920
[13]
Y. Wang, M. Li, J. Rong, G. Nie, J. Qiao, H. Wang, et al.. Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid Polym Sci, 291 (6) ( 2013), pp. 1541-1546. DOI: 10.1007/s00396-012-2875-8
[14]
M. Richard-Lacroix, C. Pellerin. Raman spectroscopy of individual poly(ethylene oxide) electrospun fibers: effect of the collector on molecular orientation. Vib Spectrosc, 91 ( 2017), pp. 92-98
[15]
T. Yano, Y. Higaki, D.i. Tao, D. Murakami, M. Kobayashi, N. Ohta, et al.. Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching. Polymer, 53 (21) ( 2012), pp. 4702-4708
[16]
D. Tian, J.H. He. Control of macromolecule chains structure in a nanofiber. Polymers, 12 (10) ( 2020), p. 2305. DOI: 10.3390/polym12102305
[17]
Z. Song, X. Hou, L. Zhang, S. Wu. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials, 4 (4) ( 2011), pp. 621-632. DOI: 10.3390/ma4040621
[18]
S. Hao, N. Pingjuan, N. Pingfan. The auxiliary electrode can improve the electric field distribution of the roller electrostatic spinning. IOP Conf Ser Earth Environ Sci, 358 (5) ( 2019), p. 052077. DOI: 10.1088/1755-1315/358/5/052077
[19]
X. Li, F.G. Bian, J.Y. Lin, Y.C. Zeng. Effect of electric field on the morphology and mechanical properties of electrospun fibers. RSC Adv, 6 (56) ( 2016), pp. 50666-50672
[20]
H.T. Niu, T. Lin, X.G. Wang. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci, 114 (6) ( 2009), pp. 3524-3530. DOI: 10.1002/app.30891
[21]
D.Y. Lin, D.C. Martin. Orientation development in electrospun liquid-crystalline polymer nanofibers. Polymeric Nanofibers, 918 ( 2006), pp. 330-342. DOI: 10.1021/bk-2006-0918.ch023
[22]
M. Richard-Lacroix, C. Pellerin. Orientation and partial disentanglement in individual electrospun fibers: diameter dependence and correlation with mechanical properties. Macromolecules, 48 (13) ( 2015), pp. 4511-4519. DOI: 10.1021/acs.macromol.5b00994
[23]
M.V. Kakade, S. Givens, K. Gardner, K.H. Lee, D.B. Chase, J.F. Rabolt. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc, 129 (10) ( 2007), pp. 2777-2782. DOI: 10.1021/ja065043f
[24]
X. Li, J. Lin, Y.C. Zeng. Electric field distribution and initial jet motion induced by spinneret configuration for molecular orientation in electrospun fibers. Eur Polym J, 98 ( 2018), pp. 330-336
[25]
S. Lei, C. Xiong, Z. Quan, X. Qin, J. Yu. Controlled stretching of the first spiral in electrospinning whipping jet via surface charge. Polymer, 217 ( 2021), p. 123443
[26]
A. Gupta, P. Ayithapu, R. Singhal. Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chem Eng Sci, 235 ( 2021), p. 116463
[27]
C.L. Pai, M.C. Boyce, G.C. Rutledge. Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer, 52 (10) ( 2011), pp. 2295-2301
[28]
Z. Song, S.W. Chiang, X. Chu, H. Du, J. Li, L. Gan, et al.. Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J Appl Polym Sci, 135 (5) ( 2018), p. 45787
[29]
C. Lu, S.W. Chiang, H. Du, J. Li, L. Gan, X. Zhang, et al.. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 115 ( 2017), pp. 52-59
[30]
I. Greenfeld, K. Fezzaa, M.H. Rafailovich, E. Zussman. Fast X-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration. Macromolecules, 45 (8) ( 2012), pp. 3616-3626. DOI: 10.1021/ma300237j
[31]
W. Wang, A.H. Barber. Diameter-dependent melting behaviour in electrospun polymer fibres. Nanotechnology, 21 (22) ( 2010), p. 225701. DOI: 10.1088/0957-4484/21/22/225701
[32]
K. Pielichowski, K. Flejtuch. Phase behavior of poly(ethylene oxide) studied by modulated-temperature DSC—influence of the molecular weight. J Macromol Sci B, 43 (2) ( 2004), pp. 459-470
[33]
X.F. Wu, Y. Salkovskiy, Y.A. Dzenis. Modeling of solvent evaporation from polymer jets in electrospinning. Appl Phys Lett, 98 (22) ( 2011), p. 223108

This work was partly supported by the grants (51973027 and 52003044) from the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities (2232020A-08), International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (21130750100), and Major Scientific and Technological Innovation Projects of Shandong Province (2021CXGC011004). This work has also been supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-03-E00023) to Prof. Xiaohong Qin, Young Elite Scientists Sponsorship Program by China Association for Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2216), and Donghua University Distinguished Young Professor Program to Prof. Liming Wang.

Funding
the National Natural Science Foundation of China(51973027); the National Natural Science Foundation of China(52003044); the Fundamental Research Funds for the Central Universities(2232020A-08); International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100); Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004); the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-03-E00023); Young Elite Scientists Sponsorship Program by China Association for Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(KF2216); Donghua University Distinguished Young Professor Program
AI Summary AI Mindmap
PDF(2543 KB)

Accesses

Citations

Detail

Sections
Recommended

/