Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles

Rui Liu, Jiahui Guo, Bin Kong, Yunru Yu, Yuanjin Zhao, Lingyun Sun

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 172-178.

PDF(2728 KB)
PDF(2728 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 172-178. DOI: 10.1016/j.eng.2022.09.018
Research
Article

Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles

Author information +
History +

Abstract

Tubular microfibers have recently attracted extensive interest for applications in tissue engineering. However, the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge. Here, we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits (BSCs). Based on the microfluidic rope-coiling effect, a viscous hydrogel precursor is first curved into a helix stream in the channel, and then consecutively packed as a hollow structured stream and gelated into a screwed conduit (SC) via ionic and covalent crosslinking. By taking advantage of the excellent fluid-controlling ability of microfluidics, various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs. The perfusability and permeability results, as well as the encapsulation and culture of human umbilical vein endothelial cells (HUVECs), human pulmonary alveolar epithelial cells (HPAs), and myogenic cells (C2C12), demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures. These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures, with likely application possibilities in biomedical engineering.

Graphical abstract

Keywords

Bio-inspired / Microfluidics / Microfiber / Tissue engineering / Bronchiole / Vessel

Cite this article

Download citation ▾
Rui Liu, Jiahui Guo, Bin Kong, Yunru Yu, Yuanjin Zhao, Lingyun Sun. Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles. Engineering, 2024, 41(10): 172‒178 https://doi.org/10.1016/j.eng.2022.09.018

References

[1]
M. Liu, S. Wang, L, Jiang. Nature-inspired superwettability systems. Nat Rev Mater, 2 (7) (2017), p. 17036.
[2]
C. Li, H. Dai, C. Gao, T. Wang, Z. Dong, L. Jiang. Bioinspired inner microstructured tube controlled capillary rise. Proc Natl Acad Sci USA, 116 (26) (2019), pp. 12704-12709.
[3]
M. Lovett, K. Lee, A. Edwards, D.L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng Part B, 15 (3) (2009), pp. 353-370.
[4]
B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin, A.J. Zaita, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364 (6439) (2019), pp. 458-464.
[5]
I.S. Kinstlinger, S.H. Saxton, G.A. Calderon, K.V. Ruiz, D.R. Yalacki, P.R. Deme, et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat Biomed Eng, 4 (9) (2020), pp. 916-932.
[6]
W.J. Polacheck, M.L. Kutys, J. Yang, J. Eyckmans, Y. Wu, H. Vasavada, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552 (7684) (2017), pp. 258-262.
[7]
L.E. Niklason, J.H. Lawson. Bioengineered human blood vessels. Science, 370 (6513) (2020), Article eaaw8682.
[8]
Q. Jin, A. Bhatta, J.V. Pagaduan, X. Chen, H. West-Foyle, J. Liu, et al. Biomimetic human small muscular pulmonary arteries. Sci Adv, 6 (13) (2020), Article eaaz2598.
[9]
B. Kong, L. Sun, R. Liu, Y. Chen, Y. Shang, H. Tan, et al. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration. Chem Eng J, 428 (2022), Article 131012.
[10]
X. Wang, Y. Yu, C. Yang, C. Shao, K. Shi, L. Shang, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater, 31 (40) (2021), Article 2105190.
[11]
L. Ouyang, J.P.K. Armstrong, Q. Chen, Y. Lin, M.M. Stevens. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv Funct Mater, 30 (1) (2020), Article 1908349.
[12]
S. Cheng, Y. Jin, N. Wang, F. Cao, W. Zhang, W. Bai, et al. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv Mater, 29 (28) (2017), Article 1700171.
[13]
T. Su, K. Huang, M.A. Daniele, M.T. Hensley, A.T. Young, J. Tang, et al. Cardiac stem cell patch integrated with microengineered blood vessels promotes cardiomyocyte proliferation and neovascularization after acute myocardial infarction. ACS Appl Mater Interfaces, 10 (39) (2018), pp. 33088-33096.
[14]
L. Shang, Y. Yu, Y. Liu, Z. Chen, T. Kong, Y. Zhao. Spinning and applications of bioinspired fiber systems. ACS Nano, 13 (3) (2019), pp. 2749-2772.
[15]
L. Zhang, Y. Xiang, H. Zhang, L. Cheng, X. Mao, N. An, et al. A biomimetic 3D-self-forming approach for microvascular scaffolds. Adv Sci, 7 (9) (2020), Article 1903553.
[16]
Y. Liu, L. Sun, H. Zhang, L. Shang, Y. Zhao. Microfluidics for drug development: from synthesis to evaluation. Chem Rev, 121 (13) (2021), pp. 7468-7529.
[17]
P. Xu, R. Xie, Y. Liu, G. Luo, M. Ding, Q. Liang. Bioinspired microfibers with embedded perfusable helical channels. Adv Mater, 29 (34) (2017), Article 1701664.
[18]
C. Yang, Y. Yu, X. Wang, L. Shang, Y. Zhao. Programmable knot microfibers from piezoelectric microfluidics. Small, 18 (5) (2022), Article 2104309.
[19]
Y. Yu, F. Fu, L. Shang, Y. Cheng, Z. Gu, Y. Zhao. Bioinspired helical microfibers from microfluidics. Adv Mater, 29 (18) (2017), Article 1605765.
[20]
F. Lin, Z. Wang, L. Xiang, L. Deng, W. Cui. Charge-guided micro/nano-hydrogel microsphere for penetrating cartilage matrix. Adv Funct Mater, 31 (49) (2021), Article 2107678.
[21]
R. Liu, B. Kong, Y. Chen, X. Liu, S. Mi. Formation of helical alginate microfibers using different G/M ratios of sodium alginate based on microfluidics. Sens Actuators B, 304 (2020), Article 127069.
[22]
R. Xie, P. Xu, Y. Liu, L. Li, G. Luo, M. Ding, et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process. Adv Mater, 30 (14) (2018), Article 1705082.
[23]
X.Y. Du, Q. Li, G. Wu, S. Chen. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater, 31 (52) (2019), Article 1903733.
[24]
H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater, 12 (6) (2013), pp. 584-590.
[25]
Y. Cheng, Y. Yu, F. Fu, J. Wang, L. Shang, Z. Gu, et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces, 8 (2) (2016), pp. 1080-1086.
[26]
X. Shi, S. Ostrovidov, Y. Zhao, X. Liang, M. Kasuya, K. Kurihara, et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv Funct Mater, 25 (15) (2015), pp. 2250-2259.
[27]
E. Kang, Y.Y. Choi, S.K. Chae, J.H. Moon, J.Y. Chang, S.H. Lee. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater, 24 (31) (2012), pp. 4271-4277.
[28]
L. Leng, A. McAllister, B. Zhang, M. Radisic, A. Günther. Mosaic hydrogels: one-step formation of multiscale soft materials. Adv Mater, 24 (27) (2012), pp. 3650-3658.
[29]
Y. Yu, L. Shang, W. Gao, Z. Zhao, H. Wang, Y. Zhao. Microfluidic lithography of bioinspired helical micromotors. Angew Chem Int Ed Engl, 56 (40) (2017), pp. 12127-12131.
[30]
Y. Yu, G. Chen, J. Guo, Y. Liu, J. Ren, T. Kong, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing. Mater Horiz, 5 (6) (2018), pp. 1137-1142.
[31]
E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.H. Lee. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater, 10 (11) (2011), pp. 877-883.
[32]
Y. Cheng, F. Zheng, J. Lu, L. Shang, Z. Xie, Y. Zhao, et al. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater, 26 (30) (2014), pp. 5184-5190.
[33]
Y. Yu, L. Shang, J. Guo, J. Wang, Y. Zhao. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc, 13 (11) (2018), pp. 2557-2579.
[34]
L. Jia, F. Han, H. Yang, G. Turnbull, J. Wang, J. Clarke, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications. Adv Healthc Mater, 8 (13) (2019), Article 1900435.
[35]
W. Zhuge, H. Liu, W. Wang, J. Wang. Microfluidic bioscaffolds for regenerative engineering. Eng Regen, 3 (1) (2022), pp. 110-120.
[36]
Q. Pi, S. Maharjan, X. Yan, X. Liu, B. Singh, A.M. van Genderen, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater, 30 (43) (2018), Article 1706913.
[37]
D. Wu, Z. Wang, J. Li, Y. Song, M.E.M. Perez, Z. Wang, et al. A 3D-bioprinted multiple myeloma model. Adv Healthc Mater, 11 (7) (2022), Article 2100884.
AI Summary AI Mindmap
PDF(2728 KB)

Accesses

Citations

Detail

Sections
Recommended

/