Transparent Thermally Tunable Microwave Absorber Prototype Based on Patterned VO2 Film

Zhengang Lu, Yilei Zhang, Heyan Wang, Chao Xia, Yunfei Liu, Shuliang Dou, Yao Li, Jiubin Tan

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 198-206.

PDF(2531 KB)
PDF(2531 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 198-206. DOI: 10.1016/j.eng.2022.10.005
Original article
Article

Transparent Thermally Tunable Microwave Absorber Prototype Based on Patterned VO2 Film

Author information +
History +

Highlights

• Transparent thermally tunable microwave absorber is proposed for the first time.

• 55.9 dB RL modulation depth at 15.06 GHz.

• Normalized optical transmittance of 84.9% at 620 nm.

• Near unity absorption.

Abstract

Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal, although having a fixed absorption performance limits their applicability. Here, a simple, transparent, and thermally tunable microwave absorber is proposed, based on a patterned vanadium dioxide (VO2) film. Numerical calculations and experiments demonstrate that the proposed VO2 absorber has a high optical transmittance of 84.9% at 620 nm; its reflection loss at 15.06 GHz can be thermally tuned from -4.257 to -60.179 dB, and near-unity absorption is achieved at 523.750 K. Adjusting only the patterned VO2 film duty cycle can change the temperature of near-unity absorption. Our VO2 absorber has a simple composition, a high optical transmittance, a thermally tunable microwave absorption performance, a large modulation depth, and an adjustable temperature tuning range, making it promising for application in tunable sensors, thermal emitters, modulators, thermal imaging, bolometers, and photovoltaic devices.

Graphical abstract

Keywords

Tunable microwave absorber / VO2 film / Optical transparent / Near unity absorption / Large modulation depth

Cite this article

Download citation ▾
Zhengang Lu, Yilei Zhang, Heyan Wang, Chao Xia, Yunfei Liu, Shuliang Dou, Yao Li, Jiubin Tan. Transparent Thermally Tunable Microwave Absorber Prototype Based on Patterned VO2 Film. Engineering, 2023, 29(10): 198‒206 https://doi.org/10.1016/j.eng.2022.10.005

References

[1]
K. Zeissler. Self-sufficient sensors operating in blood. Nat Electron, 4 (9) ( 2021), p. 629. DOI: 10.1038/s41928-021-00652-3
[2]
F. Wen, Z. Zhang, T. He, C. Lee. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun, 12 ( 2021), p. 5378
[3]
P. Mei, X.Q. Lin, J.W. Yu, A. Boukarkar, P.C. Zhang, Z.Q. Yang. Development of a low radar cross section antenna with band-notched absorber. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 582-589. DOI: 10.1109/tap.2017.2780903
[4]
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater, 25 (9) ( 2013), pp. 1296-1300. DOI: 10.1002/adma.201204196
[5]
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji. A flexible and lightweight biomass-reinforced microwave absorber. Nano Micro Lett, 12 (1) ( 2020), p. 125. DOI: 10.1177/1534734619880741
[6]
F.A. Miranda, G. Subramanyam, F.W. van Keuls, R.R. Romanofsky, J.D. Warner, C.H. Mueller. Design and development of ferroelectric tunable microwave components for Ku- and K-band satellite communication systems. IEEE Trans Microw Theory Tech, 48 (7) ( 2000), pp. 1181-1189
[7]
W. Emerson. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag, 21 (4) ( 1973), pp. 484-490
[8]
K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express, 20 (1) ( 2012), pp. 635-643
[9]
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, et al.. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv Mater, 34 (4) ( 2022), p. 2106195
[10]
Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li, J. Zheng, et al.. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci, 2 (2) ( 2022), p. 2100077
[11]
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, S. Xi, et al.. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv Funct Mater, 29 (14) ( 2019), p. 1900163
[12]
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, et al.. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Interfaces, 7 (34) ( 2015), pp. 19408-19415. DOI: 10.1021/acsami.5b05595
[13]
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, et al.. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 26 (21) ( 2014), pp. 3484-3489. DOI: 10.1002/adma.201400108
[14]
B. Shen, W. Zhai, W. Zheng. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater, 24 (28) ( 2014), pp. 4542-4548. DOI: 10.1002/adfm.201400079
[15]
D.G. Kim, J.H. Choi, D.K. Choi, S.W. Kim. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. ACS Appl Mater Interfaces, 10 (35) ( 2018), pp. 29730-29740. DOI: 10.1021/acsami.8b07054
[16]
D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, et al.. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators. Adv Opt Mater, 5 (13) ( 2017), p. 1700109
[17]
C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, et al.. Transparently curved metamaterial with broadband millimeter wave absorption. Photon Res, 7 (4) ( 2019), pp. 478-485. DOI: 10.1364/prj.7.000478
[18]
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, G. Ji. Multifunctional integrated transparent film for efficient electromagnetic protection. Nano Micro Lett, 14 ( 2022), p. 65. DOI: 10.13182/t126-37954
[19]
H. Wang, Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, et al.. Transparent perfect microwave absorber employing asymmetric resonance cavity. Adv Sci, 6 (19) ( 2019), p. 1901320
[20]
S. Lai, Y. Wu, J. Wang, W. Wu, W. Gu. Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure. Opt Mater Express, 8 (6) ( 2018), pp. 1585-1592. DOI: 10.1364/ome.8.001585
[21]
L. Li, R. Xi, H. Liu, Z. Lv. Broadband polarization-independent and low-profile optically transparent metamaterial absorber. Appl Phys Express, 11 (5) ( 2018), p. 052001. DOI: 10.7567/apex.11.052001
[22]
P. Min, Z. Song, L. Yang, B. Dai, J. Zhu. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt Express, 28 (13) ( 2020), pp. 19518-19530. DOI: 10.1364/oe.396812
[23]
C. Huang, B. Zhao, J. Song, C. Guan, X. Luo. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude. IEEE Trans Antennas Propag, 69 (6) ( 2021), pp. 3593-3598. DOI: 10.1109/tap.2020.3037813
[24]
C. Huang, J. Song, C. Ji, J. Yang, X. Luo. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface. IEEE Trans Antennas Propag, 69 (3) ( 2021), pp. 1793-1798. DOI: 10.1109/tap.2020.3011115
[25]
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, et al.. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics, 14 (6) ( 2020), pp. 383-390. DOI: 10.1038/s41566-020-0604-2
[26]
Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, L. Zhou. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater, 8 (6) ( 2020), p. 1901548
[27]
Z. Luo, J. Long, X. Chen, D. Sievenpiper. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors. Appl Phys Lett, 109 (7) ( 2016), p. 071107
[28]
T. Wu, W. Li, S. Chen, J. Guan. Wideband frequency tunable metamaterial absorber by splicing multiple tuning ranges. Results Phys, 20 ( 2021), p. 103753
[29]
J. Zhang, X. Wei, I.D. Rukhlenko, H.T. Chen, W. Zhu. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7 (1) ( 2019), pp. 265-271
[30]
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun, 6 ( 2015), p. 6628
[31]
J. Zhang, Z. Liu, W. Lu, H. Chen, B. Wu, Q. Liu. A low profile tunable microwave absorber based on graphene sandwich structure and high impedance surface. Int J RF Microw Comput Aided Eng, 30 (2) ( 2020), p. e22022
[32]
W.B. Lu, J.W. Wang, J. Zhang, Z.G. Liu, H. Chen, W.J. Song, et al.. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon, 152 ( 2019), pp. 70-76. DOI: 10.1117/12.2539695
[33]
S. Wu, D. Zha, L. Miao, Y. He, J. Jiang. Graphene-based single-layer elliptical pattern metamaterial absorber for adjustable broadband absorption in terahertz range. Phys Scr, 94 (10) ( 2019), p. 105507. DOI: 10.1088/1402-4896/ab0967
[34]
J. Zhang, Z. Li, L. Shao, W. Zhu. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface. Carbon, 176 ( 2021), pp. 374-382
[35]
M. Grande, G.V. Bianco, F.M. Perna, V. Capriati, P. Capezzuto, M. Scalora, et al.. Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Sci Rep, 9 ( 2019), Article 5463
[36]
B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, et al.. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci Rep, 4 ( 2015), Article 4130
[37]
H. Zhang, C. Hu, J. Yang, L. Tang, D. Huang, L. Shao, et al.. Graphene-based active frequency selective surface in microwave frequency. J Appl Phys, 125 (9) ( 2019), p. 094501
[38]
Y. Huang, G. Wen, W. Zhu, J. Li, L.M. Si, M. Premaratne. Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. Opt Express, 22 (13) ( 2014), pp. 16408-16417
[39]
M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, K. Bi. Magnetically tunable metamaterial perfect absorber. J Appl Phys, 119 (24) ( 2016), p. 244504
[40]
J.F. Lv, C. Ding, F.Y. Meng, J.Q. Han, T. Jin, Q. Wu. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liq Cryst, 48 (10) ( 2021), pp. 1438-1447. DOI: 10.1080/02678292.2021.1876935
[41]
S. Gao, J. Yang, P. Wang, A. Zheng, H. Lu, G. Deng, et al.. Tunable liquid crystal based phase shifter with a slot unit cell for reconfigurable reflectarrays in F-band. Appl Sci, 8 (12) ( 2018), p. 2528. DOI: 10.3390/app8122528
[42]
Z. Ren, L. Cheng, L. Hu, C. Liu, C. Jiang, S. Yang, et al.. Photoinduced broad-band tunable terahertz absorber based on a VO2 thin film. ACS Appl Mater Interfaces, 12 (43) ( 2020), pp. 48811-48819. DOI: 10.1021/acsami.0c15297
[43]
F. Ding, S. Zhong, S.I. Bozhevolnyi. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater, 6 (9) ( 2018), p. 1701204
[44]
Y.G. Jeong, Y.M. Bahk, D.S. Kim. Dynamic terahertz plasmonics enabled by phase-change materials. Adv Opt Mater, 8 (3) ( 2019), p. 19005488
[45]
M. Zhong. Modulation of a multi-band tunable metamaterial with metal disk array. Opt Mater, 106 ( 2020), p. 110023
[46]
Y. Liu, Y. Qian, F. Hu, M. Jiang, L. Zhang. A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial. Results Phys, 19 ( 2020), p. 103384
[47]
X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, et al.. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep, 9 ( 2019), Article 5454
[48]
M. Mao, Y. Liang, R. Liang, L. Zhao, N. Xu, J. Guo, et al.. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: perfect absorber and highly efficient polarization converter. Nanomaterials, 9 (8) ( 2019), p. 1101. DOI: 10.3390/nano9081101
[49]
S. Chandra, D. Franklin, J. Cozart, A. Safaei, D. Chanda. Adaptive multispectral infrared camouflage. ACS Photonics, 5 (11) ( 2018), pp. 4513-4519. DOI: 10.1021/acsphotonics.8b00972
[50]
W.J.M. Kort-Kamp, S. Kramadhati, A.K. Azad, M.T. Reiten, D.A.R. Dalvit. Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics, 5 (11) ( 2018), pp. 4554-4560. DOI: 10.1021/acsphotonics.8b01026
[51]
X. Lyu, A. Heßler, X. Wang, Y. Cao, L. Song, A. Ludwig, et al.. Combining switchable phase-change materials and phase-transition materials for thermally regulated smart mid-infrared modulators. Adv Opt Mater, 9 (16) ( 2021), p. 2100417
[52]
Q. Wang, B. Shen, J. Huang, H. Yang, G. Pei, H. Yang. A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating. Appl Energy, 285 ( 2021), p. 116453
[53]
J. Rensberg, S. Zhang, Y. Zhou, A.S. McLeod, C. Schwarz, M. Goldflam, et al.. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett, 16 (2) ( 2016), pp. 1050-1055. DOI: 10.1021/acs.nanolett.5b04122
[54]
Z. Zhu, P.G. Evans, R.F. Haglund Jr, J.G. Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett, 17 (8) ( 2017), pp. 4881-4885. DOI: 10.1021/acs.nanolett.7b01767
[55]
T. Kang, Z. Ma, J. Qin, Z. Peng, W. Yang, T. Huang, et al.. Large-scale power-efficient Au/VO2 active metasurfaces for ultrafast optical modulation. Nanophotonics, 10 (2) ( 2020), pp. 909-918. DOI: 10.1515/nanoph-2020-0354
[56]
J.N. Wang, B. Xiong, R.W. Peng, C.Y. Li, B.Q. Hou, C.W. Chen, et al.. Flexible phase change materials for electrically-tuned active absorbers. Small, 17 (31) ( 2021), p. 2101282
[57]
A. Negm, M. Bakr, M. Howlader, S. Ali. Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches. Smart Mater Struct, 30 (7) ( 2021), p. 075011. DOI: 10.1088/1361-665x/abfb86
[58]
Y. Zhang, H. Dong, N. Mou, L. Chen, R. Li, L. Zhang. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Opt Express, 28 (18) ( 2020), pp. 26836-26849. DOI: 10.1364/oe.401766
[59]
M. Rahmanzadeh, H. Rajabalipanah, A. Abdolali. Analytical investigation of ultrabroadband plasma-graphene radar absorbing structures. IEEE Trans Plasma Sci, 45 (6) ( 2017), pp. 945-954

We acknowledge support from the National Natural Science Foundation of China (61975046).

Funding
the National Natural Science Foundation of China(61975046)
AI Summary AI Mindmap
PDF(2531 KB)

Accesses

Citations

Detail

Sections
Recommended

/