Pien Tze Huang Protects Against Non-Alcoholic Steatohepatitis by Modulating the Gut Microbiota and Metabolites in Mice

Xianyi Zeng, Xiang Zhang, Hao Su, Hongyan Gou, Harry Cheuk-Hay Lau, Xiaoxu Hu, Ziheng Huang, Yan Li, Jun Yu

Engineering ›› 2024, Vol. 35 ›› Issue (4) : 257-269.

PDF(6153 KB)
PDF(6153 KB)
Engineering ›› 2024, Vol. 35 ›› Issue (4) : 257-269. DOI: 10.1016/j.eng.2022.10.010
Research
Article

Pien Tze Huang Protects Against Non-Alcoholic Steatohepatitis by Modulating the Gut Microbiota and Metabolites in Mice

Author information +
History +

Abstract

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease without effective treatment. The traditional Chinese medicine formulation Pien Tze Huang (PTH) can suppress inflammatory diseases. Here, we evaluate the effects of PTH on the evolution of NASH and its underlying mechanisms. We found that PTH prevented the development of steatohepatitis induced by various dietary models, including a high-fat high-cholesterol (HFHC) diet, choline-deficient high-fat diet (CD-HFD), and methionine- and choline-deficient (MCD) diet, along with significant suppression of liver injury, hepatic triglyceride, and lipid peroxidation. Moreover, ten days of PTH treatment after the onset of NASH significantly ameliorated MCD diet-induced steatosis and liver injury in mice. Through the metagenomic sequencing of stool samples, we found that PTH administration restored the gut microbiota with enrichment of probiotics including Lactobacillus acidophilus (L. acidophilus), Lactobacillus plantarum, Lactococcus lactis, and Bacillus subtilis. The enriched L. acidophilus prevented MCD diet-induced steatohepatitis. In addition, PTH restored the gut barrier function in mice with steatohepatitis, as evidenced by reduced intestinal permeability, decreased serum lipopolysaccharides (LPS) level, and increased epithelial tight-junction protein E-cadherin expression. Our metabolomic analysis via liquid chromatography-mass spectrometry profiling identified the alteration in the metabolism of bile acids in the portal vein of PTH-treated mice. We further confirmed that an intact gut microbiota is necessary for PTH to exhibit anti-steatohepatitis effects. In conclusion, PTH protects against steatohepatitis development by modulating the gut microbiota and metabolites. PTH is a potential promising prophylactic and therapeutic option for patients with NASH.

Graphical abstract

Keywords

Pien Tze Huang / Non-alcoholic steatohepatitis / Gut barrier function / Gut microbiota

Cite this article

Download citation ▾
Xianyi Zeng, Xiang Zhang, Hao Su, Hongyan Gou, Harry Cheuk-Hay Lau, Xiaoxu Hu, Ziheng Huang, Yan Li, Jun Yu. Pien Tze Huang Protects Against Non-Alcoholic Steatohepatitis by Modulating the Gut Microbiota and Metabolites in Mice. Engineering, 2024, 35(4): 257‒269 https://doi.org/10.1016/j.eng.2022.10.010

References

[1]
T.C. Yip, H.W. Lee, W.K. Chan, G.L. Wong, V.W. Wong. Asian perspective on NAFLD-associated HCC. J Hepatol, 76 (3) (2022), pp. 726-734.
[2]
R. Loomba, S.L. Friedman, G.I. Shulman. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 184 (10) (2021), pp. 2537-2564.
[3]
V.W. Wong, S. Chitturi, G.L. Wong, J. Yu, H.L. Chan, G.C. Farrell. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol, 1 (1) (2016), pp. 56-67.
[4]
S.M. Francque, P. Bedossa, V. Ratziu, Q.M. Anstee, E. Bugianesi, A.J. Sanyal, et al. NATIVE Study Group. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med, 385 (17) (2021), pp. 1547-1558.
[5]
T. Shi, L.i. Wu, W. Ma, L. Ju, M. Bai, X. Chen, et al. Nonalcoholic fatty liver disease: pathogenesis and treatment in traditional Chinese medicine and western medicine. Evid Based Complement Alternat Med, 2020 (2020), pp. 1-16.
[6]
L. Huang, Y. Zhang, X. Zhang, X. Chen, Y. Wang, J. Lu, et al. Therapeutic potential of Pien-Tze-Huang: a review on its chemical composition, pharmacology, and clinical application. Molecules, 24 (18) (2019), p. 3274.
[7]
J.K. Lau, X. Zhang, J. Yu. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol, 241 (1) (2017), pp. 36-44.
[8]
M. Wolf, A. Adili, K. Piotrowitz, Z. Abdullah, Y. Boege, K. Stemmer, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell, 26 (4) (2014), pp. 549-564.
[9]
X. Zhang, O.O. Coker, E.S.H. Chu, K. Fu, H.C.H. Lau, Y.X. Wang, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 70 (4) (2021), pp. 761-774.
[10]
J.K. Carter, D. Bhattacharya, J.N. Borgerding, M.I. Fiel, J.J. Faith, S.L. Friedman. Modeling dysbiosis of human NASH in mice: loss of gut microbiome diversity and overgrowth of Erysipelotrichales. PLoS One, 16 (1) (2021), e0244763.
[11]
Y. Pan, X. Zhang. Diet and gut microbiome in fatty liver and its associated liver cancer. J Gastroenterol Hepatol, 37 (1) (2022), pp. 7-14.
[12]
H. Chu, Y. Duan, L. Yang, B. Schnabl. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut, 68 (2) (2019), pp. 359-370.
[13]
C.J. Chang, C.S. Lin, C.C. Lu, J. Martel, Y.F. Ko, D.M. Ojcius, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun, 6 (1) (2015), p. 7489.
[14]
Y. Li, X. Ji, H. Wu, X. Li, H. Zhang, D. Tang. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. J Ethnopharmacol, 278 (2021), p. 114207.
[15]
X. Zhang, L. Fan, J. Wu, H. Xu, W.Y. Leung, K. Fu, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol, 71 (1) (2019), pp. 163-174.
[16]
J. Yang, H. Wei, Y. Zhou, C.H. Szeto, C. Li, Y. Lin, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology, 162 (1) (2022), pp. 135-149.e2.
[17]
M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun, A. Benechet, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41 (2) (2014), pp. 296-310.
[18]
N.Y. Lee, M.J. Shin, G.S. Youn, S.J. Yoon, Y.R. Choi, H.S. Kim, et al. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol, 27 (1) (2021), pp. 110-124.
[19]
A.V. Jäger, P. Arias, M.V. Tribulatti, M.A. Brocco, M.V. Pepe, A. Kierbel. The inflammatory response induced by Pseudomonas aeruginosa in macrophages enhances apoptotic cell removal. Sci Rep, 11 (1) (2021), p. 2393.
[20]
J. Mouries, P. Brescia, A. Silvestri, I. Spadoni, M. Sorribas, R. Wiest, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol, 71 (6) (2019), pp. 1216-1228.
[21]
C.J. Sinal, M. Tohkin, M. Miyata, J.M. Ward, G. Lambert, F.J. Gonzalez. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 102 (6) (2000), pp. 731-744.
[22]
J. Zhu, D.i. Zhang, T. Wang, Z. Chen, L. Chen, H. Wu, et al. Target identification of hepatic fibrosis using Pien Tze Huang based on mRNA and lncRNA. Sci Rep, 11 (1) (2021), 16980.
[23]
J. Zhao, H. Hu, Y. Wan, Y. Zhang, L. Zheng, Z. Hong. Pien Tze Huang Gan Bao ameliorates carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Exp Ther Med, 13 (5) (2017), pp. 1820-1826.
[24]
H. Zheng, X. Wang, Y. Zhang, L.i. Chen, L. Hua, W. Xu. Pien-Tze-Huang ameliorates hepatic fibrosis via suppressing NF-κB pathway and promoting HSC apoptosis. J Ethnopharmacol, 244 (2019), p. 111856.
[25]
F. Qi, S. Zhou, L. Li, L. Wei, A. Shen, L. Liu, et al. Pien Tze Huang inhibits the growth of hepatocellular carcinoma cells by upregulating miR-16 expression. Oncol Lett, 14 (6) (2017), pp. 8132-8137.
[26]
F. Shen, R.D. Zheng, X.Q. Sun, W.J. Ding, X.Y. Wang, J.G. Fan. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int, 16 (4) (2017), pp. 375-381.
[27]
L. Zhu, S.S. Baker, C. Gill, W. Liu, R. Alkhouri, R.D. Baker, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57 (2) (2013), pp. 601-609.
[28]
J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne, F. Araujo-Perez, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 63 (3) (2016), pp. 764-775.
[29]
L. Hoyles, J.M. Fernández-Real, M. Federici, M. Serino, J. Abbott, J. Charpentier, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med, 24 (7) (2018), pp. 1070-1080.
[30]
J.R. Mujico, G.C. Baccan, A. Gheorghe, L.E. Díaz, A. Marcos. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr, 110 (4) (2013), pp. 711-720.
[31]
H. Ebrahimzadeh Leylabadlo, R. Ghotaslou, H. Samadi Kafil, M.M. Feizabadi, S.Y. Moaddab, S. Farajnia, et al. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis, 39 (4) (2020), pp. 613-627.
[32]
V.S. Wong, G.H. Wong, A.L. Chim, W.W. Chu, D.W. Yeung, K.T. Li, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol, 12 (2) (2013), pp. 256-262.
[33]
C.R. Naudin, K. Maner-Smith, J.A. Owens, G.M. Wynn, B.S. Robinson, J.D. Matthews, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology, 159 (2) (2020), pp. 639-651.e5.
[34]
J. Jiang, J. Xiong, J. Ni, C. Chen, K. Wang. Live combined B. subtilis and E. faecium alleviate liver inflammation, improve intestinal barrier function, and modulate gut microbiota in mice with non-alcoholic fatty liver disease. Med Sci Monit, 27 (2021), e931143.
[35]
X.F. Yang, M. Lu, L. You, H. Gen, L. Yuan, T. Tian, et al. Herbal therapy for ameliorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology. Chin Med, 16 (1) (2021), p. 62.
[36]
Q. Song, X. Zhang. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines, 10 (3) (2022), p. 10.
[37]
W. Jia, G. Xie, W. Jia. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 15 (2) (2018), pp. 111-128.
[38]
W. Wang, J. Zhao, W. Gui, D. Sun, H. Dai, L.i. Xiao, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol, 175 (3) (2018), pp. 469-484.
[39]
F. Huang, X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun, 10 (1) (2019), p. 4971.
AI Summary AI Mindmap
PDF(6153 KB)

Accesses

Citations

Detail

Sections
Recommended

/