ARGs-OAP v3.0: Antibiotic-Resistance Gene Database Curation and Analysis Pipeline Optimization

Xiaole Yin, Xiawan Zheng, Liguan Li, An-Ni Zhang, Xiao-Tao Jiang, Tong Zhang

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 234-241.

PDF(3217 KB)
PDF(3217 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 234-241. DOI: 10.1016/j.eng.2022.10.011
Research
Article

ARGs-OAP v3.0: Antibiotic-Resistance Gene Database Curation and Analysis Pipeline Optimization

Author information +
History +

Abstract

Antibiotic resistance, which is encoded by antibiotic-resistance genes (ARGs), has proliferated to become a growing threat to public health around the world. With technical advances, especially in the popularization of metagenomic sequencing, scientists have gained the ability to decipher the profiles of ARGs in diverse samples with high accuracy at an accelerated speed. To analyze thousands of ARGs in a high-throughput way, standardized and integrated pipelines are needed. The new version (v3.0) of the widely used ARGs online analysis pipeline (ARGs-OAP) has made significant improvements to both the reference database—the structured ARG (SARG) database—and the integrated analysis pipeline. SARG has been enhanced with sequence curation to improve annotation reliability, incorporate emerging resistance genotypes, and determine rigorous mechanism classification. The database has been further organized and visualized online in the format of a tree-like structure with a dictionary. It has also been divided into sub-databases for different application scenarios. In addition, the ARGs-OAP has been improved with adjusted quantification methods, simplified tool implementation, and multiple functions with user-defined reference databases. Moreover, the online platform now provides a diverse biostatistical analysis workflow with visualization packages for the efficient interpretation of ARG profiles. The ARGs-OAP v3.0 with an improved database and analysis pipeline will benefit academia, governmental management, and consultation regarding risk assessment of the environmental prevalence of ARGs.

Graphical abstract

Keywords

SARG database / ARGs-OAP / Antibiotic-resistance genes / Environmental metagenome / Quantification

Cite this article

Download citation ▾
Xiaole Yin, Xiawan Zheng, Liguan Li, An-Ni Zhang, Xiao-Tao Jiang, Tong Zhang. ARGs-OAP v3.0: Antibiotic-Resistance Gene Database Curation and Analysis Pipeline Optimization. Engineering, 2023, 27(8): 234‒241 https://doi.org/10.1016/j.eng.2022.10.011

References

[1]
D. Danko, D. Bezdan, E.E. Afshin, S. Ahsanuddin, C. Bhattacharya, D.J. Butler, et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 184 (13) (2021), pp. 3376-3393.
[2]
R.S. Hendriksen, P. Munk, P. Njage, B. van Bunnik, L. McNally, O. Lukjancenko, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun, 10 (1) (2019), p. 1124.
[3]
M. Boolchandani, A.W. D’Souza, G. Dantas. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet, 20 (6) (2019), pp. 356-370.
[4]
A.G. McArthur, N. Waglechner, F. Nizam, A. Yan, M.A. Azad, A.J. Baylay, et al.The comprehensive antibiotic resistance database. Antimicrob Agents Chemother, 57 (7) (2013), pp. 3348-3357.
[5]
B. Liu, M. Pop. ARDB-antibiotic resistance genes database. Nucleic Acids Res, 37 (Suppl 1) (2009), pp. D443-D447. DOI: 10.1093/nar/gkn656
[6]
Y. Yang, X. Jiang, B. Chai, L. Ma, B. Li, A. Zhang, et al. ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics, 32 (15) (2016), pp. 2346-2351. DOI: 10.1093/bioinformatics/btw136
[7]
R.C. Edgar. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26 (19) (2010), pp. 2460-2461. DOI: 10.1093/bioinformatics/btq461
[8]
S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. Basic local alignment search tool. J Mol Biol, 215 (3) (1990), pp. 403-410.
[9]
X. Yin, X.T. Jiang, B. Chai, L. Li, Y. Yang, J.R. Cole, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics, 34 (13) (2018), pp. 2263-2270. DOI: 10.1093/bioinformatics/bty053
[10]
M.C. Roberts, S. Schwarz. Tetracycline and chloramphenicol resistance mechanisms. D.L. Mayers, J.D. Sobel, M. Ouellette, K.S. Kaye, D. Marchaim (Eds.), Antimicrobial drug resistance: mechanisms of drug resistance, Springer, New York City (2017), pp. 231-243. DOI: 10.1007/978-3-319-46718-4_15
[11]
I. Chopra, M. Roberts. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65 (2) (2001), pp. 232-260.
[12]
B. Jia, A.R. Raphenya, B. Alcock, N. Waglechner, P. Guo, K.K. Tsang, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res, 45 (D1) (2017), pp. D566-D573. DOI: 10.1093/nar/gkw1004
[13]
A. Bairoch, R. Apweiler.The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res, 28 (1) (2000), pp. 45-48.
[14]
A.N. Zhang, J.M. Gaston, C.L. Dai, S. Zhao, M. Poyet, M. Groussin, et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun, 12 (1) (2021), p. 4765.
[15]
E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res, 46 (W1) (2018), pp. W537-W544. DOI: 10.1093/nar/gky379
[16]
M.C. Roberts. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett, 282 (2) (2008), pp. 147-159. DOI: 10.1111/j.1574-6968.2008.01145.x
[17]
D.M.P. De Oliveira, B.M. Forde, T.J. Kidd, P.N.A. Harris, M.A. Schembri, S.A. Beatson, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev, 33 (3) (2020), pp. e00181-219
[18]
J.M. Munita, C.A. Arias. Mechanisms of antibiotic resistance. Microbiol Spectr, 4 (2) (2016). VMBF-0016-2015
[19]
J.M.A. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J.V. Piddock. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 13 (1) (2015), pp. 42-51. DOI: 10.1038/nrmicro3380
[20]
K. Bush. The ABCD’s of β-lactamase nomenclature. J Infect Chemother, 19 (4) (2013), pp. 549-559. DOI: 10.1007/s10156-013-0640-7
[21]
J.M. Rodríguez-Martínez, C. Velasco, P. Álvaro, M.E. Cano, M.M. Luis. Plasmid-mediated quinolone resistance: an update. J Infect Chemother, 17 (2) (2011), pp. 149-182. DOI: 10.1007/s10156-010-0120-2
[22]
G.D. Wright. Q&A: antibiotic resistance: where does it come from and what can we do about it?. BMC Biol, 8 (1) (2010), p. 123.
[23]
M.S. Ramirez, M.E. Tolmasky. Aminoglycoside modifying enzymes. Drug Resist Updat, 13 (6) (2010), pp. 151-171.
[24]
L.J.V. Piddock. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev, 19 (2) (2006), pp. 382-402.
[25]
K. Poole. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother, 56 (1) (2005), pp. 20-51. DOI: 10.1093/jac/dki171
[26]
S.R. Connell, D.M. Tracz, K.H. Nierhaus, D.E. Taylor. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother, 47 (12) (2003), pp. 3675-3681.
[27]
P.J. Warburton, L. Ciric, A. Lerner, L.A. Seville, A.P. Roberts, P. Mullany, et al. TetAB46, a predicted heterodimeric ABC transporter conferring tetracycline resistance in Streptococcus australis isolated from the oral cavity. J Antimicrob Chemother, 68 (1) (2013), pp. 17-22. DOI: 10.1093/jac/dks351
[28]
K. Nishino, J. Yamada, H. Hirakawa, T. Hirata, A. Yamaguchi. Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother, 47 (9) (2003), pp. 3030-3033.
[29]
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, 49 (D1) (2021), pp. D480-D489
[30]
J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, et al. Pfam: the protein families database in 2021. Nucleic Acids Res, 49 (D1) (2021), pp. D412-D419. DOI: 10.1093/nar/gkaa913
[31]
Y. Yang, A.N. Zhang, Y. Che, L. Liu, Y. Deng, T. Zhang. Underrepresented high diversity of class 1 integrons in the environment uncovered by PacBio sequencing using a new primer. Sci Total Environ, 787 (2021), Article 147611.
[32]
Y. Che, Y. Xia, L. Liu, A.D. Li, Y. Yang, T. Zhang. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome, 7 (1) (2019), p. 44.
[33]
L. Ma, Y. Xia, B. Li, Y. Yang, L.G. Li, J.M. Tiedje, et al. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken and human feces. Environ Sci Technol, 50 (1) (2016), pp. 420-427. DOI: 10.1021/acs.est.5b03522
[34]
A.N. Zhang, L.G. Li, L. Ma, M.R. Gillings, J.M. Tiedje, T. Zhang. Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome, 6 (1) (2018), p. 130.
[35]
Y. Che, Y. Yang, X. Xu, K. Břinda, M.F. Polz, W.P. Hanage, et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci USA, 118 (6) (2021). e2008731118
AI Summary AI Mindmap
PDF(3217 KB)

Accesses

Citations

Detail

Sections
Recommended

/