Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices

Kang Huang, Shuhao Lin, Yu Xia, Yongsheng Xia, Feiyan Mu, Yuqin Lu, Hongyan Cao, Yixing Wang, Weihong Xing, Zhi Xu

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 69-78.

PDF(2827 KB)
PDF(2827 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 69-78. DOI: 10.1016/j.eng.2022.11.008
Research
Article

Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices

Author information +
History +

Abstract

Ion conductive membranes (ICMs) with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices. However, it is extremely challenging to construct fast proton-selective transport channels in ICMs. Herein, a membrane with highly conductive proton selectivity was fabricated by incorporating porous carbon sieving nanospheres with a hollow structure (HCSNs) in a polymer matrix. Due to the precise ion sieving ability of the microporous carbon shells and the fast proton transport through their accessible internal cavities, this advanced membrane presented a proton conductivity (0.084 S·cm−1) superior to those of a commercial Nafion 212 (N212) membrane (0.033 S·cm−1) and a pure polymer membrane (0.049 S·cm−1). The corresponding proton selectivity of the membrane (6.68 × 105 S·min·cm−3) was found to be enhanced by about 5.9-fold and 4.3-fold, respectively, compared with those of the N212 membrane (1.13 × 105 S·min·cm−3) and the pure membrane (1.56 × 105 S·min·cm−3). Low-field nuclear magnetic resonance (LF-NMR) clearly revealed the fast proton-selective transport channels enabled by the HCSNs in the polymeric membrane. The proposed membrane exhibited an outstanding energy efficiency (EE) of 84% and long-term stability over 1400 cycles with a 0.065% capacity decay per cycle at 120 mA·cm−2 in a typical vanadium flow battery (VFB) system.

Graphical abstract

Keywords

Ion conductive membrane / Hollow carbon sieving nanosphere / Proton transport channel / Flow battery

Cite this article

Download citation ▾
Kang Huang, Shuhao Lin, Yu Xia, Yongsheng Xia, Feiyan Mu, Yuqin Lu, Hongyan Cao, Yixing Wang, Weihong Xing, Zhi Xu. Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices. Engineering, 2023, 28(9): 69‒78 https://doi.org/10.1016/j.eng.2022.11.008

References

[1]
T.M. Gür. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci, 11 (10) (2018), pp. 2696-2767. DOI: 10.1039/c8ee01419a
[2]
Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao, L. Wang, et al. Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv Energy Mater, 10 (14) (2020), Article 1903930
[3]
K.M. Tan, T.S. Babu, V.K. Ramachandaramurthy, P. Kasinathan, S.G. Solanki, S.K. Raveendran. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J Energy Storage, 39 (2021), Article 102591
[4]
J. Liu, Q. Wang, Z. Song, F. Fang. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7 (11) (2021), pp. 1611-1622
[5]
S. Zhang, W. Chen. China’s energy transition pathway in a carbon neutral vision. Engineering, 14 (2022), pp. 64-76. DOI: 10.1117/12.2636629
[6]
X.Q. Zhang, C.Z. Zhao, J.Q. Huang, Q. Zhang. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering, 4 (6) (2018), pp. 831-847
[7]
S. Du. Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering, 7 (1) (2021), pp. 33-49
[8]
Y. Xia, Y. Wang, H. Cao, S. Lin, Y. Xia, X. Hou, et al. Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J Membr Sci, 653 (2022), Article 120517
[9]
P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew Chem Int Ed Engl, 59 (24) (2020), pp. 9564-9573. DOI: 10.1002/anie.202000012
[10]
H. Cao, Y. Xia, Y. Lu, Y. Wu, Y. Xia, X. Hou, et al. MOF-801 polycrystalline membrane with sub-10 nm polymeric assembly layer for ion sieving and flow battery storage. AIChE J, 68 (6) (2022), p. e17657
[11]
T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng, Z. Zhao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J Am Chem Soc, 144 (23) (2022), pp. 10220-10229. DOI: 10.1021/jacs.2c00318
[12]
W Wang, Y Zhang, X Yang, H Sun, Y Wu, L Shao. Monovalent cation exchange membranes with Janus charged structure for ion separation. Engineering. Forthcoming (2023)
[13]
D. Zhang, L. Xin, Y. Xia, L. Dai, K. Qu, K. Huang, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Membr Sci, 624 (2021), Article 119047
[14]
J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang, K. Zhao, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv Energy Mater, 10 (22) (2020), p. 1904041
[15]
Q. Dai, F. Xing, X. Liu, D. Shi, C. Deng, Z. Zhao, et al. High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy Environ Sci, 15 (4) (2022), pp. 1594-1600. DOI: 10.1039/d2ee00267a
[16]
Z. Yuan, L. Liang, Q. Dai, T. Li, Q. Song, H. Zhang, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule, 6 (4) (2022), pp. 884-905
[17]
X. Lou, B. Lu, M. He, Y. Yu, X. Zhu, F. Peng, et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Membr Sci, 643 (2022), Article 120015
[18]
Y. Zhang, H. Wang, P. Qian, Y. Zhou, J. Shi, H. Shi. Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: a comparative study. J Membr Sci, 610 (2020), Article 118232
[19]
L. Zeng, J. Ye, J. Zhang, J. Liu, C. Jia. A promising SPEEK/MCM composite membrane for highly efficient vanadium redox flow battery. Surf Coat Tech, 358 (2019), pp. 167-172
[20]
L. Dai, F. Xu, K. Huang, Y. Xia, Y. Wang, K. Qu, et al. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility. Angew Chem Int Ed Engl, 60 (36) (2021), pp. 19933-19941. DOI: 10.1002/anie.202107085
[21]
L. Xin, D. Zhang, K. Qu, Y. Lu, Y. Wang, K. Huang, et al. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane. Adv Funct Mater, 31 (42) (2021), p. 2104629
[22]
J. Kim, J. Han, H. Kim, K. Kim, H. Lee, E. Kim, et al. Thermally cross-linked sulfonated poly(ether ether ketone) membranes containing a basic polymer-grafted graphene oxide for vanadium redox flow battery application. J Energy Storage, 45 (2022), Article 103784
[23]
Y. Ji, Z.Y. Tay, S.F.Y. Li. Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J Membr Sci, 539 (2017), pp. 197-205
[24]
D.H. Hyeon, J.H. Chun, C.H. Lee, H.C. Jung, S.H. Kim. Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng, 32 (8) (2015), pp. 1554-1563. DOI: 10.1007/s11814-014-0358-y
[25]
M.A. Aziz, S. Shanmugam. Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J Mater Chem A, 5 (32) (2017), pp. 16663-16671
[26]
D.W. Lim, H. Kitagawa. Proton transport in metal-organic frameworks. Chem Rev, 120 (16) (2020), pp. 8416-8467. DOI: 10.1021/acs.chemrev.9b00842
[27]
P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc, 140 (4) (2018), pp. 1423-1427. DOI: 10.1021/jacs.7b11255
[28]
Z.C. Guo, Z.Q. Shi, X.Y. Wang, Z.F. Li, G. Li. Proton conductive covalent organic frameworks. Coord Chem Rev, 422 (2020), Article 213465
[29]
Z. Zhang, X. Cui, X. Jiang, Q. Ding, J. Cui, Y. Zhang, et al. Efficient splitting of trans-/cis-olefins using an anion-pillared ultramicroporous metal-organic framework with guest-adaptive pore channels. Engineering, 11 (2022), pp. 80-86. DOI: 10.1145/3584376.3584392
[30]
X. Wang, X. Ding, H. Zhao, J. Fu, Q. Xin, Y. Zhang. Pebax-based mixed matrix membranes containing hollow polypyrrole nanospheres with mesoporous shells for enhanced gas permeation performance. J Membr Sci, 602 (2020), Article 117968
[31]
W. Liu, N. Luo, P. Li, X. Yang, Z. Dai, S. Song, et al. New sulfonated poly (ether ether ketone) composite membrane with the spherical bell-typed superabsorbent microspheres: excellent proton conductivity and water retention properties at low humidity. J Power Sources, 452 (2020), Article 227823
[32]
J. Wang, Y. Liu, Q. Cai, A. Dong, D. Yang, D. Zhao. Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv Mater, 34 (3) (2022), p. 2107957
[33]
J.H. Lee, K. Im, S. Han, S.J. Yoo, J. Kim, J.H. Kim. Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture. Separ Purif Tech, 250 (2020), Article 117065
[34]
W.Y. Liu, X.J. Ju, X.Q. Pu, Q.W. Cai, Y.Q. Liu, Z. Liu, et al. Functional capsules encapsulating molecular-recognizable nanogels for facile removal of organic micro-pollutants from water. Engineering, 7 (5) (2021), pp. 636-646. Corrigendum in: Engineering 2021;7(9):1342
[35]
J. Zhang, J.A. Schott, Y. Li, W. Zhan, S.M. Mahurin, K. Nelson, et al. Membrane-based gas separation accelerated by hollow nanosphere architectures. Adv Mater, 29 (4) (2017), p. 1603797
[36]
Z. Salahshoor, A. Shahbazi, N. Koutahzadeh. Developing a novel nitrogen-doped hollow porous carbon sphere (N-HPCS) blended nanofiltration membrane with superior water permeance characteristic for high saline and colored wastewaters treatment. Chem Eng J, 431 (Pt 2) (2022), Article 134068
[37]
S.S. Park, A.J. Rieth, C.H. Hendon, M. Dincă. Selective vapor pressure dependent proton transport in a metal-organic framework with two distinct hydrophilic pores. J Am Chem Soc, 140 (6) (2018), pp. 2016-2019. DOI: 10.1021/jacs.7b12784
[38]
M.K. Petersen, G.A. Voth. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane Nafion. J Phys Chem B, 110 (37) (2006), pp. 18594-18600. DOI: 10.1021/jp062719k
[39]
Q. Dai, Z. Liu, L. Huang, C. Wang, Y. Zhao, Q. Fu, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat Commun, 11 (1) (2020), p. 13. Corrected in: Nat Commun 2020;11(1):2609
[40]
J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu, D. Yuan, et al. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J Membr Sci, 572 (2019), pp. 110-118
[41]
A. Li, G. Wang, X. Wei, F. Li, M. Zhang, J. Zhang, et al. Highly selective sulfonated poly(ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries. J Mater Sci, 55 (35) (2020), pp. 16822-16835. DOI: 10.1007/s10853-020-05228-8
[42]
Z. Yuan, X. Li, J. Hu, W. Xu, J. Cao, H. Zhang. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys Chem Chem Phys, 16 (37) (2014), pp. 19841-19847
[43]
Y. Zhao, H. Zhang, C. Xiao, L. Qiao, Q. Fu, X. Li. Highly selective charged porous membranes with improved ion conductivity. Nano Energy, 48 (2018), pp. 353-360
[44]
J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu, H. Li. In situ grown tungsten trioxide nanoparticles on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv Funct Mater, 32 (8) (2022), p. 2109427
[45]
H. Vinh-Thang, S. Kaliaguine. Predictive models for mixed-matrix membrane performance: a review. Chem Rev, 113 (7) (2013), pp. 4980-5028. DOI: 10.1021/cr3003888
[46]
W.H. Zhang, M.J. Yin, Q. Zhao, C.G. Jin, N. Wang, S. Ji, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat Nanotechnol, 16 (3) (2021), pp. 337-343. DOI: 10.1038/s41565-020-00833-9
[47]
X. Li, Y. Wang, J. Chang, H. Sun, H. He, C. Qian, et al. “Mix-then-on-demand-complex”: in situ cascade anionization and complexation of graphene oxide for high-performance nanofiltration membranes. ACS Nano, 15 (3) (2021), pp. 4440-4449. DOI: 10.1021/acsnano.0c08308
[48]
Y.L. Ji, B.X. Gu, S.J. Xie, M.J. Yin, W.J. Qian, Q. Zhao, et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal-organic frameworks. Adv Mater, 33 (38) (2021), p. 2102292
AI Summary AI Mindmap
PDF(2827 KB)

Accesses

Citations

Detail

Sections
Recommended

/