Design and In Situ Additive Manufacturing of Multifunctional Structures

Yan Zhang, Guangyu Zhang, Jing Qiao, Longqiu Li

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 58-68.

PDF(5057 KB)
PDF(5057 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 58-68. DOI: 10.1016/j.eng.2022.11.009
Research
Article

Design and In Situ Additive Manufacturing of Multifunctional Structures

Author information +
History +

Abstract

Multifunctional structures (MFSs) integrate diverse functions to achieve superior properties. However, conventional design and manufacturing methods—which generally lack quality control and largely depend on complex equipment with multiple stations to achieve the integration of distinct materials and devices—are unable to satisfy the requirements of MFS applications in emerging industries such as aerospace engineering. Motivated by the concept of design for manufacturing, we adopt a layer regulation method with an established optimization model to design typical MFSs with load-bearing, electric, heat-conduction, and radiation-shielding functions. A high-temperature in situ additive manufacturing (AM) technology is developed to print various metallic wires or carbon fiber-reinforced high-melting-point polyetheretherketone (PEEK) composites. It is found that the MFS, despite its low mass, exceeds the stiffness of the PEEK substrate by 21.5%. The embedded electrics remain functional after the elastic deformation stage. Compared with those of the PEEK substrate, the equivalent thermal conductivity of the MFS beneath the central heat source area is enhanced by 568.0%, and the radiation shielding is improved by 27.9%. Moreover, a satellite prototype with diverse MFSs is rapidly constructed as an illustration. This work provides a systematic approach for high-performance design and advanced manufacturing, which exhibits considerable prospects for both the function expansion and performance enhancement of industrial equipment.

Graphical abstract

Keywords

Additive manufacturing / Multifunctional structure / Optimal design / Satellite / Polyetheretherketone

Cite this article

Download citation ▾
Yan Zhang, Guangyu Zhang, Jing Qiao, Longqiu Li. Design and In Situ Additive Manufacturing of Multifunctional Structures. Engineering, 2023, 28(9): 58‒68 https://doi.org/10.1016/j.eng.2022.11.009

References

[1]
Q. Zhang, K. Barri, S.R. Kari, Z.L. Wang, A.H. Alavi. Multifunctional triboelectric nanogenerator-enabled structural elements for next generation civil infrastructure monitoring systems. Adv Funct Mater, 31 (47) (2021), p. 2105825
[2]
R. Hensleigh, H. Cui, Z. Xu, J. Massman, D. Yao, J. Berrigan, et al. Charge-programmed three-dimensional printing for multi-material electronic devices. Nat Electron, 3 (4) (2020), pp. 216-224. DOI: 10.1038/s41928-020-0391-2
[3]
A. B.M.T. Haque, R. Tutika, R.L. Byrum, M.D. Bartlett. Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv Funct Mater, 30 (25) (2020), p. 2000832
[4]
S. Liu, W. Wang, W. Xu, L. Liu, W. Zhang, K. Song, et al. Continuous three-dimensional printing of architected piezoelectric sensors in minutes. Research, 2022 (2022), p. 9790307
[5]
K.K. Sairajan, G.S. Aglietti, K.M. Mani. A review of multifunctional structure technology for aerospace applications. Acta Astronaut, 120 (2016), pp. 30-42
[6]
L. Luo, F. Zhang, J. Leng. Shape memory epoxy resin and its composites: from materials to applications. Research, 2022 (2022), p. 9767830
[7]
Q. Chen, P. Lv, J. Huang, T.Y. Huang, H. Duan. Intelligent shape-morphing micromachines. Research, 2021 (2021), p. 9806463
[8]
G.S. Aglietti, C.W. Schwingshackl, S.C. Roberts. Multifunctional structure technologies for satellite applications. Shock Vib Digest, 39 (5) (2007), pp. 381-391. DOI: 10.1177/0583102407077397
[9]
K. Ikeya, H. Sakamoto, H. Nakanishi, H. Furuya, T. Tomura, R. Ide, et al. Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane. Acta Astronaut, 173 (2020), pp. 363-377
[10]
F. Zuo, L. Deng, L. Li, C. Wang, Y. Mo. Thermal control and shield design for the instrumental module of the X-ray pulsar navigation sensor. J. Kleiman (Ed.), Protection of materials and structures from the space environment, Springer International Publishing, Cham (2017), pp. 531-541. DOI: 10.1007/978-3-319-19309-0_53
[11]
T.H. Stevenson, E.G. Lightsey. Design and optimization of a multifunctional 3D-printed structure for an inspector Cubesat. Acta Astronaut, 170 (2020), pp. 331-341
[12]
I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses, S. Mazouffre, T. Henning, et al. Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl Phys Rev, 5 (1) (2018), p. 011104
[13]
D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu. Material-structure-performance integrated laser-metal additive manufacturing. Science, 372 (6545) (2021)
[14]
M. Hasan, J. Zhao, Z. Jiang. Micromanufacturing of composite materials: a review. Int J Extreme Manuf, 1 (1) (2019), p. 012004. DOI: 10.1088/2631-7990/ab0f74
[15]
Y. Yang, Z. Wang, Q. He, X. Li, G. Lu, L. Jiang, et al. 3D printing of nacre-inspired structures with exceptional mechanical and flame-retardant properties. Research, 2022 (2022), p. 9840574
[16]
J. Galos, A.S. Best, A.P. Mouritz. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads. Mater Des, 185 (2020), p. 108228
[17]
B. Ren, G. Yuen, S. Deng, L. Jiang, D. Zhou, L. Gu, et al. Multifunctional optoelectronic device based on an asymmetric active layer structure. Adv Funct Mater, 29 (17) (2019), p. 1807894
[18]
O. Battaïa, A. Dolgui, S.S. Heragu, S.M. Meerkov, M.K. Tiwari. Design for manufacturing and assembly/disassembly: joint design of products and production systems. Int J Prod Res, 56 (24) (2018), pp. 7181-7189. DOI: 10.1080/00207543.2018.1549795
[19]
C. Fortunet, S. Durieux, H. Chanal, E. Duc. DFM method for aircraft structural parts using the AHP method. Int J Adv Manuf Technol, 95 (1-4) (2018), pp. 397-408. DOI: 10.1007/s00170-017-1213-1
[20]
D. Guo, Y. Lu.Overview of extreme manufacturing. Int J Extreme Manuf, 1 (2) (2019), p. 020201. DOI: 10.1088/2631-7990/ab21c5
[21]
W. Ren, J. Xu, Z. Lian, X. Sun, Z. Xu, H. Yu. Localized electrodeposition micro additive manufacturing of pure copper microstructures. Int J Extreme Manuf, 4 (1) (2022), p. 015101. DOI: 10.1088/2631-7990/ac3963
[22]
M. Kaur, T.H. Kim, W.S. Kim. New frontiers in 3D structural sensing robots. Adv Mater, 33 (19) (2021), p. e2002534
[23]
B. Chen, L. Chen, B. Du, H. Liu, W. Li, D. Fang. Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable. Compos Part B Eng, 204 (2021), p. 108501
[24]
S. Liu, Q. Li, J. Liu, W. Chen, Y. Zhang. A realization method for transforming a topology optimization design into additive manufacturing structures. Engineering, 4 (2) (2018), pp. 277-285
[25]
G. Liu, Y. He, P. Liu, Z. Chen, X. Chen, L. Wan, et al. Development of bioimplants with 2D, 3D, and 4D additive manufacturing. Mater Des, 6 (11) (2020), pp. 1232-1243
[26]
H. Feng, Y. Liu, L. Feng, L. Zhan, S. Meng, H. Ji, et al. Additively manufactured flexible electronics with ultrabroad range and high sensitivity for multiple physiological signals’ detection. Research, 2022 (2022), p. 9871489
[27]
C. Zeng, L. Liu, W. Bian, J. Leng, Y. Liu. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability. Compos Struct, 262 (2021), p. 113626
[28]
D. Espalin, D.W. Muse, E. MacDonald, R.B. Wicker. 3D printing multifunctionality: structures with electronics. Int J Adv Manuf Technol, 72 (5-8) (2014), pp. 963-978. DOI: 10.1007/s00170-014-5717-7
[29]
E. MacDonald, D. Espalin, D. Doyle, J. Muñoz, S. Ambriz, J. Coronel, et al. Fabricating patch antennas within complex dielectric structures through multi-process 3D printing. J Manuf Process, 34 (2018), pp. 197-203
[30]
E. MacDonald, R. Wicker. Multiprocess 3D printing for increasing component functionality. Science, 353 (6307) (2016)
[31]
Z. Zhu, D.W.H. Ng, H.S. Park, M.C. McAlpine. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater, 6 (1) (2021), pp. 27-47
[32]
G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain, J. Joannopoulos, et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat Commun, 10 (1) (2019), p. 4010
[33]
M. Echsel, P. Springer, S. Hümbert. Production and planned in-orbit qualification of a function-integrated, additive manufactured satellite sandwich structure with embedded automotive electronics. CEAS Space J, 13 (2021), pp. 111-118. DOI: 10.1007/s12567-020-00328-2
[34]
E. Sacco, S.K. Moon. Additive manufacturing for space: status and promises. Int J Adv Manuf Technol, 105 (10) (2019), pp. 4123-4146. DOI: 10.1007/s00170-019-03786-z
[35]
A. Hamad, A. Mian, S.I. Khondaker. Direct-write inkjet printing of nanosilver ink (UTDAg) on PEEK Substrate. J Manuf Process, 55 (2020), pp. 326-334
[36]
M. Thiruchitrambalam, D. Bubesh Kumar, D. Shanmugam, M. Jawaid. A review on PEEK composites—manufacturing methods, properties and applications. Mater Today Proc, 33 (2020), pp. 1085-1092
[37]
M.J. Madito, T.T. Hlatshwayo, V.A. Skuratov, C.B. Mtshali, N. Manyala, Z.M. Khumalo. Characterization of 167 MeV Xe ion irradiated n-type 4H-SiC. Appl Surf Sci, 493 (2019), pp. 1291-1298
[38]
C. Wang, L. Zhang, Y. Fang, W. Sun. Design, characterization, and 3D printing of cardiovascular stents with zero Poisson’s ratio in longitudinal deformation. Engineering, 7 (7) (2021), pp. 979-990
[39]
Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, et al. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites. Compos Sci Technol, 201 (2021), p. 108502
[40]
R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep, 6 (1) (2016), p. 23058
[41]
N. Mosleh, A.M. Rezadoust, S. Dariushi. Determining process-window for manufacturing of continuous carbon fiber-reinforced composite using 3D-printing. Mater Manuf Process, 36 (4) (2020), pp. 1-10
[42]
T. Wang, N. Li, G. Link, J. Jelonnek, J. Fleischer, J. Dittus, et al. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics. Compos Part A Appl Sci Manuf, 140 (2021), p. 106181
[43]
A.M. Peterson. Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit Manuf, 27 (2019), pp. 363-371
[44]
A. Cano-Vicent, M.M. Tambuwala, S.S. Hassan, D. Barh, A.A.A. Aljabali, M. Birkett, et al. Fused deposition modelling: current status, methodology, applications and future prospects. Addit Manuf, 47 (2021), p. 102378
[45]
C. Feng, C.P. Hemantha Rajapaksha, A. Jákli. Ionic elastomers for electric actuators and sensors. Engineering, 7 (5) (2021), pp. 581-602
[46]
C. Kim, C. Sullivan, A. Hillstrom, R. Wicker. Intermittent embedding of wire into 3D prints for wireless power transfer. Int J Precis Eng Manuf, 22 (5) (2021), pp. 919-931. DOI: 10.1007/s12541-021-00508-y
[47]
C. Kim, D. Espalin, M. Liang, H. Xin, A. Cuaron, I. Varela, et al. 3D printed electronics with high performance, multi-layered electrical interconnect. IEEE Access, 5 (2017), pp. 25286-25294
[48]
M. Rinaldi, F. Cecchini, L. Pigliaru, T. Ghidini, F. Lumaca, F. Nanni. Additive manufacturing of polyether ether ketone (PEEK) for space applications: a nanosat polymeric structure. Polymers, 13 (1) (2020), p. 11. DOI: 10.3390/polym13010011
[49]
I. Fajardo, A. Lidtke, S. Bendoukha, J. Gonzalez-Llorente, R. Rodríguez, R. Morales, et al. Design, implementation, and operation of a small satellite mission to explore the space weather effects in LEO. Aerospace, 6 (10) (2019), p. 108. DOI: 10.3390/aerospace6100108
[50]
A. Gülhan, S. Braun. An experimental study on the efficiency of transpiration cooling in laminar and turbulent hypersonic flows. Exp Fluids, 50 (3) (2011), pp. 509-525. DOI: 10.1007/s00348-010-0945-6
[51]
V. Demyanov. J. Becedas (Ed.), Satellites missions and technologies for geosciences, IntechOpen, London (2020)
[52]
H. Li, J. Yang, F. Tian, X. Li, S. Dong. Study on the microstructure of polyether ether ketone films irradiated with 170 keV protons by grazing incidence small angle X-ray scattering (GISAXS) technology. Polymers, 12 (11) (2020), p. 2717. DOI: 10.3390/polym12112717
AI Summary AI Mindmap
PDF(5057 KB)

Accesses

Citations

Detail

Sections
Recommended

/