The Low-Carbon Transition of Energy Systems: A Bibliometric Review from an Engineering Management Perspective

Peng Zhou, Yue Lv, Wen Wen

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 147-158.

PDF(5895 KB)
PDF(5895 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 147-158. DOI: 10.1016/j.eng.2022.11.010
Research
Review

The Low-Carbon Transition of Energy Systems: A Bibliometric Review from an Engineering Management Perspective

Author information +
History +

Abstract

As a major solution to climate change, the low-carbon transition of energy systems has received growing attention in the past decade. This paper presents a bibliometric review of the literature on the low-carbon transition of energy systems from an engineering management perspective. First, the definition and boundaries of the energy system transition are clarified, covering transformation of the energy structure, decarbonization of fossil fuel utilization, and improvement in energy efficiency. Second, a systematic search of the related literature and a bibliometric analysis are conducted to reveal the research trends. It is found that the number of related publications has been growing exponentially during the past decade, with researchers from China, the United Kingdom, the United States, Germany, and the Netherlands comprising the majority of authors. Related studies with interdisciplinary characteristics appear in journals focusing on energy engineering, environmental science, and social science related to energy issues. Four major research themes are identified by clustering the existing literature: ① low-carbon transition pathways with different spatiotemporal scales and transition constraints; ② low-carbon technology diffusion with a focus on renewable energy technologies, pollution control technologies, and other technologies facilitating the energy transition; ③ infrastructure network planning for energy systems covering various sectors and regions; and ④ transition-driving mechanisms from the political, economic, social, and natural perspectives. These four topics play distinct but mutually supportive roles in facilitating the low-carbon transition of energy systems, and require more in-depth research on designing resilient low-carbon transition pathways with coordinated goals, promoting low-carbon technologies with cost-effective and reliable infrastructure network deployment, and balancing multi-level risks in various systems. Finally, business models, nongovernment actors, energy justice, deep decarbonization, and zero-energy buildings are recognized as emerging hot topics.

Graphical abstract

Keywords

Low-carbon transition / Energy system / Bibliometric review / Systematic review

Cite this article

Download citation ▾
Peng Zhou, Yue Lv, Wen Wen. The Low-Carbon Transition of Energy Systems: A Bibliometric Review from an Engineering Management Perspective. Engineering, 2023, 29(10): 147‒158 https://doi.org/10.1016/j.eng.2022.11.010

References

[1]
V.J. Schwanitz, A. Wierling, M.E. Biresselioglu, M. Celino, M.H. Demir, M. Bałazińska, et al.. Current state and call for action to accomplish findability, accessibility, interoperability, and reusability of low carbon energy data. Sci Rep, 12 (1) ( 2022), Article 5208
[2]
Y. Fan, B. Yi. Evolution,driving mechanism, and pathway of China's energy transition. J Manage world, 37 (08) ( 2021), pp. 95-105 [Chinese].. DOI: 10.3991/ijet.v16i13.24039
[3]
R.C. Allen. Backward into the future: the shift to coal and implications for the next energy transition. Energ Policy, 50 ( 2012), pp. 17-23
[4]
S. Chu, A. Majumdar. Opportunities and challenges for a sustainable energy future. Nature, 488 (7411) ( 2012), pp. 294-303. DOI: 10.1038/nature11475
[5]
International Energy Agency. Global energy review:CO2 emissions in 2021. Report. Paris: International Energy Agency; 2022 Mar.
[6]
Á. Galán-Martín, D. Vázquez, S. Cobo, N. Mac Dowell, J.A. Caballero, G. Guillén-Gosálbez. Delaying carbon dioxide removal in the European Union puts climate targets at risk. Nat Commun, 12 ( 2021), p. 6490
[7]
P. Zhou, S. Gao, Y. Lv, G. Zhao. Energy transition management towards a low-carbon world. Front Eng Manag, 9 (3) ( 2022), pp. 499-503. DOI: 10.1007/s42524-022-0201-9
[8]
K. Tanaka, B.C. O’Neill. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets. Nat. Clim Change, 8 (4) ( 2018), pp. 319-324. DOI: 10.1038/s41558-018-0097-x
[9]
Y. Wei, K. Chen, J. Kang, W. Chen, X. Wang, X. Zhang. Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14 ( 2022), pp. 52-63
[10]
P.R. Liu, A.E. Raftery. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target. Commun Earth Environ, 2 (1) ( 2021), p. 29. DOI: 10.1117/12.2578895
[11]
X. Chen, Y. Liu, M. Mcelroy. Transition towards carbon-neutral electrical systems for China: challenges and perspectives. Front Eng Manag, 9 (3) ( 2022), pp. 504-508. DOI: 10.1007/s42524-022-0220-6
[12]
International Energy Agency. Report.Security of clean energy transitions. Paris: International Energy Agency; 2021 July.
[13]
International Energy Agency. Energy efficiency indicators:overview. Report. Paris: International Energy Agency; 2021 Dec.
[14]
International Energy Agency. Report.Electricity market report. Paris: International Energy Agency; 2021 July.
[15]
A.C. Köberle, T. Vandyck, C. Guivarch, N. Macaluso, V. Bosetti, A. Gambhir, et al.. The cost of mitigation revisited. Nat Clim Change, 11 (12) ( 2021), pp. 1035-1045. DOI: 10.1038/s41558-021-01203-6
[16]
X. Lu, S. Zhang, J. Xing, Y. Wang, W. Chen, D. Ding, et al.. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering, 6 (12) ( 2020), pp. 1423-1431
[17]
A. Goldthau. The G20 must govern the shift to low-carbon energy. Nature, 546 (7657) ( 2017), pp. 203-205. DOI: 10.1038/546203a
[18]
Y. Yang, H. Wang, A. Löschel, P. Zhou. Energy transition toward carbon-neutrality in China: pathways, implications and uncertainties. Front Eng Manag, 9 (3) ( 2022), pp. 358-372. DOI: 10.1007/s42524-022-0202-8
[19]
A.G.L. Borthwick. Marine renewable energy seascape. Engineering, 2 (1) ( 2016), pp. 69-78
[20]
S. Knox, M. Hannon, F. Stewart, R. Ford. The (in)justices of smart local energy systems: a systematic review, integrated framework, and future research agenda. Energy Res Soc Sci, 83 ( 2022), p. 102333
[21]
M. Roelfsema, H.L. van Soest, M. Harmsen, D.P. van Vuuren, C. Bertram, M. den Elzen, et al.. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat Commun, 11 (1) (2020), Article 2096
[22]
S. Zhang, W. Chen. China’s energy transition pathway in a carbon neutral vision. Engineering, 14 ( 2022), pp. 64-76. DOI: 10.1117/12.2636629
[23]
L. Wang, L. Zhao, G. Mao, J. Zuo, H. Du. Way to accomplish low carbon development transformation: a bibliometric analysis during 1995-2014. Renew Sust Energ Rev, 68 ( 2017), pp. 57-69
[24]
J. Wang, Y. Zhou, F.L. Cooke. Low-carbon economy and policy implications: a systematic review and bibliometric analysis. Environ Sci Pollut Res, 29 (43) ( 2022), pp. 65432-65451. DOI: 10.1007/s11356-022-20381-0
[25]
W. Zhang, B. Li, R. Xue, C. Wang, W. Cao. A systematic bibliometric review of clean energy transition: implications for low-carbon development. PLoS One, 16 (12) ( 2021), p. e0261091. DOI: 10.1371/journal.pone.0261091
[26]
X.C. Meng, Y.H. Seong, M.K. Lee.Research characteristics and development trend of global low-carbon power—based on bibliometric analysis of1983-2021. Energies, 14 (16) ( 2021), p. 4983. DOI: 10.3390/en14164983
[27]
H. Omrany, R. Chang, V. Soebarto, Y. Zhang, A. Ghaffarianhoseini, J. Zuo.A bibliometric review of net zero energy building research1995-2022. Energy Build, 262 ( 2022), p. 111996
[28]
D.F. Dominković, J.M. Weinand, F. Scheller, M. D'Andrea, R. McKenna. Reviewing two decades of energy system analysis with bibliometrics. Renew Sust Energ Rev, 153 ( 2022), p. 111749
[29]
J. Xu, Z. Li. A review on ecological engineering based engineering management. Omega, 40 (3) ( 2012), pp. 368-378
[30]
X. Xu, X. Chen, F. Jia, S. Brown, Y. Gong, Y. Xu. Supply chain finance: a systematic literature review and bibliometric analysis. Int J Prod Econ, 204 ( 2018), pp. 160-173
[31]
B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, T. Freiheit. Smart manufacturing and intelligent manufacturing: a comparative review. Engineering, 7 (6) ( 2021), pp. 738-757
[32]
R. Tang, J. Zhao, Y. Liu, X. Huang, Y. Zhang, D. Zhou, et al.. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nat Commun, 13 (1) ( 2022), Article 1008
[33]
J.S. Kikstra, A. Vinca, F. Lovat, B. Boza-Kiss, B. van Ruijven, C. Wilson, et al.. Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nat Energy, 6 (12) ( 2021), pp. 1114-1123. DOI: 10.1038/s41560-021-00904-8
[34]
T.J. Foxon. Transition pathways for a UK low carbon electricity future. Energ Policy, 52 ( 2013), pp. 10-24
[35]
N. Bieber, J.H. Ker, X. Wang, C. Triantafyllidis, K.H. van Dam, R.H.E.M. Koppelaar, et al.. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy, 113 ( 2018), pp. 584-607
[36]
P. Fragkos, H. Laura van Soest, R. Schaeffer, L. Reedman, A.C. Köberle, N. Macaluso, et al.. Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy, 216 ( 2021), p. 119385
[37]
D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, et al.. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun, 10 (1) ( 2019), Article 1077
[38]
J. Rogelj, G. Luderer, R.C. Pietzcker, E. Kriegler, M. Schaeffer, V. Krey, et al.. Energy system transformations for limiting end-of-century warming to below 1.5 °C.. Nat Clim Change, 5 (6) ( 2015), pp. 519-527. DOI: 10.1038/nclimate2572
[39]
K. Riahi, E. Kriegler, N. Johnson, C. Bertram, M. den Elzen, J. Eom, et al.. Locked into copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol Forecast Soc Change, 90 ( 2015), pp. 8-23
[40]
A. Grubler, C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D.L. McCollum, et al.. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat Energy, 3 (6) ( 2018), pp. 515-527. DOI: 10.1038/s41560-018-0172-6
[41]
H.J. Kooij, M. Oteman, S. Veenman, K. Sperling, D. Magnusson, J. Palm, et al.. Between grassroots and treetops: community power and institutional dependence in the renewable energy sector in Denmark, Sweden and the Netherlands. Energy Res Soc Sci, 37 ( 2018), pp. 52-64
[42]
M. Murshed, R. Alam, A. Ansarin. The environmental Kuznets curve hypothesis for Bangladesh: the importance of natural gas, liquefied petroleum gas, and hydropower consumption. Environ Sci Pollut Res, 28 (14) ( 2021), pp. 17208-17227. DOI: 10.1007/s11356-020-11976-6
[43]
Y. Oswald, A. Owen, J.K. Steinberger. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat Energy, 5 (3) ( 2020), pp. 231-239. DOI: 10.1038/s41560-020-0579-8
[44]
S. Bouzarovski, H.S. Tirado. The energy divide: integrating energy transitions, regional inequalities and poverty trends in the European Union. Eur Urban Reg Stud, 24 (1) ( 2017), pp. 69-86. DOI: 10.1177/0969776415596449
[45]
N. Healy, J.C. Stephens, S.A. Malin. Embodied energy injustices: unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains. Energy Res Soc Sci, 48 ( 2019), pp. 219-234
[46]
D. Bogdanov, A. Gulagi, M. Fasihi, C. Breyer. Full energy sector transition towards 100% renewable energy supply: integrating power, heat, transport and industry sectors including desalination. Appl Energ, 283 ( 2021), p. 116273
[47]
E. Kriegler, J.P. Weyant, G. Blanford, V. Krey, L. Clarke, J. Edmonds, et al.. The role of technology for achieving policy objectives: overview of the EMF 27 study on global technology and strategies. Clim Change, 123 (3-4) ( 2014), pp. 353-367. DOI: 10.1007/s10584-013-0953-7
[48]
H. Wang, H. Yi, J. Peng, G. Wang, Y. Liu, H. Jiang, et al.. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy Convers Manage, 153 ( 2017), pp. 409-422. DOI: 10.3390/ijms18020409
[49]
J. Duan, H. Zuo, Y. Bai, J. Duan, M. Chang, B. Chen. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy, 217 ( 2021), p. 119397
[50]
A.G. Olabi, A.S. Bahri, A.A. Abdelghafar, A. Baroutaji, E.T. Sayed, A.H. Alami, et al.. Large-scale hydrogen production and storage technologies: current status and future directions. Int J Hydrogen Energy, 46 (45) ( 2021), pp. 23498-23528
[51]
N. Kittner, F. Lill, D.M. Kammen. Energy storage deployment and innovation for the clean energy transition. Nat Energy, 2 (9) ( 2017), p. 17125
[52]
M. Fasihi, O. Efimova, C. Breyer. Techno-economic assessment of CO2 direct air capture plants. J Clean Prod, 224 ( 2019), pp. 957-980
[53]
J. Wang, Y. Yang. Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Convers Manage, 124 ( 2016), pp. 566-577
[54]
M.A. Abdelkareem, A.M. El Haj, E.T. Sayed, B. Soudan. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination, 435 ( 2018), pp. 97-113
[55]
A. Månberger, B. Stenqvist. Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development. Energy Policy, 119 ( 2018), pp. 226-241
[56]
M. Murshed. An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res, 27 (29) ( 2020), pp. 36254-36281. DOI: 10.1007/s11356-020-09497-3
[57]
J. Markard, S. Wirth, B. Truffer. Institutional dynamics and technology legitimacy—a framework and a case study on biogas technology. Res Policy, 45 (1) ( 2016), pp. 330-344
[58]
C. Breyer, D. Bogdanov, A. Gulagi, A. Aghahosseini, L.S.N.S. Barbosa, O. Koskinen, et al.. On the role of solar photovoltaics in global energy transition scenarios. Prog Photovoltaics, 25 (8) ( 2017), pp. 727-745. DOI: 10.1002/pip.2885
[59]
J.H. Williams, A. DeBenedictis, R. Ghanadan, A. Mahone, J. Moore, W.R. Morrow, et al.. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science, 335 (6064) ( 2012), pp. 53-59. DOI: 10.1126/science.1208365
[60]
K. Bódis, I. Kougias, A. Jäger-Waldau, N. Taylor, S. Szabó. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew Sust Energ Rev, 114 ( 2019), p. 109309
[61]
Y.L. Xu, Z.C. Li. Distributed optimal resource management based on the consensus algorithm in a microgrid. IEEE T Ind Electron, 62 (4) ( 2015), pp. 2584-2592
[62]
M. Nemati, M. Braun, S. Tenbohlen. Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl Energ, 210 ( 2018), pp. 944-963
[63]
A.S. Brouwer, M. van den Broek, A. Seebregts, A. Faaij. Operational flexibility and economics of power plants in future low-carbon power systems. Appl Energ, 156 ( 2015), pp. 107-128
[64]
A. Naderipour, Z. Abdul-Malek, S.A. Nowdeh, H. Kamyab, A.R. Ramtin, S. Shahrokhi, et al.. Comparative evaluation of hybrid photovoltaic, wind, tidal and fuel cell clean system design for different regions with remote application considering cost. J Clean Prod, 283 ( 2021), p. 124207
[65]
C. Ghenai, T. Salameh, A. Merabet. Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. Int J Hydrogen Energy, 45 (20) ( 2020), pp. 11460-11470
[66]
D. Mazzeo, C. Baglivo, N. Matera, P.M. Congedo, G. Oliveti. A novel energy-economic-environmental multi-criteria decision-making in the optimization of a hybrid renewable system. Sustain Cities Soc, 52 ( 2020), p. 101780
[67]
H. Ishaq, O. Siddiqui, G. Chehade, I. Dincer. A solar and wind driven energy system for hydrogen and urea production with CO2 capturing. Int J Hydrogen Energy, 46 (6) ( 2021), pp. 4749-4760
[68]
P. Blechinger, C. Cader, P. Bertheau, H. Huyskens, R. Seguin, C. Breyer. Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands. Energy Policy, 98 ( 2016), pp. 674-687
[69]
B.K. Sovacool, P. Kivimaa, S. Hielscher, K. Jenkins. Vulnerability and resistance in the United Kingdom’s smart meter transition. Energy Policy, 109 ( 2017), pp. 767-781
[70]
E. Hache, A. Palle. Renewable energy source integration into power networks, research trends and policy implications: a bibliometric and research actors survey analysis. Energy Policy, 124 ( 2019), pp. 23-35
[71]
A. Grubler. Energy transitions research: insights and cautionary tales. Energy Policy, 50 ( 2012), pp. 8-16
[72]
M.J. Burke, J.C. Stephens. Political power and renewable energy futures: a critical review. Energy Res Soc Sci, 35 ( 2018), pp. 78-93
[73]
N. Koch, V.P. Tynkkynen. The geopolitics of renewables in Kazakhstan and Russia. Geopolitics, 26 (2) ( 2021), pp. 521-540. DOI: 10.1080/14650045.2019.1583214
[74]
R.A. Huber, T. Maltby, K. Szulecki, S. Ćetković. Is populism a challenge to European energy and climate policy? Empirical evidence across varieties of populism. J Eur Public Policy, 28 (7) ( 2021), pp. 998-1017. DOI: 10.1080/13501763.2021.1918214
[75]
M. Power, P. Newell, L. Baker, H. Bulkeley, J. Kirshner, A. Smith. The political economy of energy transitions in Mozambique and South Africa: the role of the Rising Powers. Energy Res Soc Sci, 17 ( 2016), pp. 10-19
[76]
Q. Ji, D. Zhang. How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?. Energy Policy, 128 ( 2019), pp. 114-124
[77]
D.L. McCollum, W. Zhou, C. Bertram, H.S. de Boer, V. Bosetti, S. Busch, et al.. Energy investment needs for fulfilling the Paris Agreement and achieving the sustainable development goals. Nat Energy, 3 (7) ( 2018), pp. 589-599. DOI: 10.1038/s41560-018-0179-z
[78]
A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, D. Epema. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl Energy, 282 ( 2021), p. 116123
[79]
G. Rentier, H. Lelieveldt, G.J. Kramer. Varieties of coal-fired power phase-out across Europe. Energy Policy, 132 ( 2019), pp. 620-632
[80]
W. Haas, F. Krausmann, D. Wiedenhofer, M. Heinz. How circular is the global economy? An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. J Ind Ecol, 19 (5) ( 2015), pp. 765-777. DOI: 10.1111/jiec.12244
[81]
J. Schot, L. Kanger, G. Verbong. The roles of users in shaping transitions to new energy systems. Nat Energy, 1 (5) ( 2016), p. 16054
[82]
J. Ayling, N. Gunningham. Non-state governance and climate policy: the fossil fuel divestment movement. Clim Policy, 17 (2) ( 2017), pp. 131-149. DOI: 10.1080/14693062.2015.1094729
[83]
S.E. Hosseini. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res Soc Sci, 68 ( 2020), p. 101633
[84]
C.N. Wang, T.T. Dang, H. Tibo, D.H. Duong. Assessing renewable energy production capabilities using DEA window and Fuzzy TOPSIS model. Symmetry, 13 (2) ( 2021), p. 334. DOI: 10.3390/sym13020334
[85]
G. Bridge, S. Bouzarovski, M. Bradshaw, N. Eyre. Geographies of energy transition: space, place and the low-carbon economy. Energ. Policy, 53 ( 2013), pp. 331-340
[86]
P. Kivimaa, F. Kern. Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions. Res Policy, 45 (1) ( 2016), pp. 205-217
[87]
M. Ryghaug, T.M. Skjølsvold, S. Heidenreich. Creating energy citizenship through material participation. Soc Stud Sci, 48 (2) ( 2018), pp. 283-303. DOI: 10.1177/0306312718770286
[88]
A. Scheidel, D. Del Bene, J. Liu, G. Navas, S. Mingorría, F. Demaria, et al.. Environmental conflicts and defenders: a global overview. Global Environ Chang, 63 ( 2020), p. 102104
[89]
K. Feng, S. Davis, L. Sun, K. Hubacek. Drivers of the US CO2 emissions 1997-2013. Nat Commun, 6 (1) ( 2015), p. 7714
[90]
A. Cherp, V. Vinichenko, J. Jewell, E. Brutschin, B. Sovacool. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: a meta-theoretical framework. Energy Res Soc Sci, 37 ( 2018), pp. 175-190
[91]
M. Child, C. Kemfert, D. Bogdanov, C. Breyer. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew Energy, 139 ( 2019), pp. 80-101
[92]
Z. Lv, W. Kong, X. Zhang, D. Jiang, H. Lv, X. Lu. Intelligent security planning for regional distributed energy internet. IEEE T Ind Inform, 16 (5) ( 2020), pp. 3540-3547. DOI: 10.1109/tii.2019.2914339
[93]
M. Yang, D. Sharma, X. Shi. Policy entry points for facilitating a transition towards a low-carbon electricity future. Front Eng Manage, 9 (3) ( 2022), pp. 462-472. DOI: 10.1007/s42524-022-0214-4

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (71934007 and 72004228).

Funding
the National Natural Science Foundation of China(71934007); the National Natural Science Foundation of China(72004228)
AI Summary AI Mindmap
PDF(5895 KB)

Accesses

Citations

Detail

Sections
Recommended

/