Consumption Based Source Apportionment Indicates Different Regional Contributions to O3 Concentrations and Health Effects

Shengqiang Zhu, Peng Wang, Siyu Wang, Guannan Geng, Hongyan Zhao, Yuan Wang, Hongliang Zhang

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 130-138.

PDF(2385 KB)
PDF(2385 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 130-138. DOI: 10.1016/j.eng.2022.11.011
Research
Article

Consumption Based Source Apportionment Indicates Different Regional Contributions to O3 Concentrations and Health Effects

Author information +
History +

Abstract

China is confronting aggravated ozone (O3) pollution, leading to adverse health impacts. This study quantifies the regional contributions to O3 in China using two approaches; estimating ① where goods are produced (the production method), and ② where goods are consumed (the consumption method). The production method predicts higher local source contribution than the consumption method; this difference can be attributed to exports. Occurrence of high-O3 episodes suggests a major contribution to O3 concentration as a result of trade activities. Based on the consumption method, 9219 out of 18 532 daily premature mortalities were caused by local sources in north China, while it increased to 14 471 of the production method when neglecting contributions due to export and consumption in other regions. This study suggests that O3 control should consider both where goods are consumed and emissions are emitted, especially taking account of international trade activities.

Graphical abstract

Keywords

O3 pollution / Trade / Source-oriented CMAQ / Health risks

Cite this article

Download citation ▾
Shengqiang Zhu, Peng Wang, Siyu Wang, Guannan Geng, Hongyan Zhao, Yuan Wang, Hongliang Zhang. Consumption Based Source Apportionment Indicates Different Regional Contributions to O3 Concentrations and Health Effects. Engineering, 2023, 28(9): 130‒138 https://doi.org/10.1016/j.eng.2022.11.011

References

[1]
P. Wang, Y. Chen, J.L. Hu, H.L. Zhang, Q. Ying. Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmos Environ, 211 (2019), pp. 79-90
[2]
K. Li, D.J. Jacob, L. Shen, X. Lu, I. De Smedt, H. Liao. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmos Chem Phys, 20 (19) (2020), pp. 11423-11433. DOI: 10.5194/acp-20-11423-2020
[3]
P. Wang, J.Y. Shen, M. Xia, S. Sun, Y. Zhang, H. Zhang, et al. Unexpected enhancement of ozone exposure and health risks during National Day in China. Atmos Chem Phys, 21 (13) (2021), pp. 10347-10356. DOI: 10.5194/acp-21-10347-2021
[4]
Y. Wang, O. Wild, X. Chen, Q. Wu, M. Gao, H.S. Chen, et al. Health impacts of long-term ozone exposure in China over 2013-2017. Environ Int, 144 (2020), p. 106030
[5]
T. Le, Y. Wang, L. Liu, J. Yang, Y.L. Yung, G. Li, et al. Unexpected air pollution with marked emission reductions during COVID-19 in China. Science, 369 (6504) (2020), pp. 702-706. DOI: 10.1126/science.abb7431
[6]
C.S. Malley, D.K. Henze, J.C.I. Kuylenstierna, H.W. Vallack, Y. Davila, S.C. Anenberg, et al. Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure. Environ Health Perspect, 125 (8) (2017), Article 087021
[7]
D. Shindell, G. Faluvegi, K. Seltzer, C. Shindell. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat Clim Chang, 8 (4) (2018), pp. 291-295. DOI: 10.1038/s41558-018-0108-y
[8]
K.M. Seltzer, D.T. Shindell, C.S. Malley. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China. Environ Res Lett, 13 (10) (2018), Article 104018. DOI: 10.1088/1748-9326/aae29d
[9]
S.C. Anenberg, L.W. Horowitz, D.Q. Tong, J.J. West. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect, 118 (9) (2010), pp. 1189-1195. DOI: 10.1289/ehp.0901220
[10]
S. Sillman. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J Geophys Res Atmos, 100 (D7) (1995), pp. 14175-14188
[11]
S. Zhu, J. Poetzscher, J. Shen, S. Wang, P. Wang, H. Zhang. Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity. Geophys Res Lett, 48 (10) (2021), Article GL093668
[12]
H.Y. Zhao, X. Li, Q. Zhang, X. Jiang, J. Lin, G.P. Peters, et al. Effects of atmospheric transport and trade on air pollution mortality in China. Atmos Chem Phys, 17 (17) (2017), pp. 10367-10381. DOI: 10.5194/acp-17-10367-2017
[13]
H.Y. Zhao, Q. Zhang, D.B. Guan, S.J. Davis, Z. Liu, H. Huo, et al. Assessment of China’s virtual air pollution transport embodied in trade by using a consumption-based emission inventory. Atmos Chem Phys, 15 (10) (2015), pp. 5443-5456. DOI: 10.5194/acp-15-5443-2015
[14]
Y. Wang, H. Yang, J. Liu, Y. Xu, X. Wang, J.M. Ma, et al. Analysis of multiple drivers of air pollution emissions in China via interregional trade. J Clean Prod, 244 (2020), Article 118507
[15]
J.T. Lin, D. Pan, S.J. Davis, Q. Zhang, K.B. He, C. Wang, et al. China’s international trade and air pollution in the United States. Environ Sci, 111 (5) (2014), pp. 1736-1741. DOI: 10.1073/pnas.1312860111
[16]
S.J. Davis, G.P. Peters, K. Caldeira. The supply chain of CO2 emissions. Proc Natl Acad Sci USA, 108 (45) (2011), pp. 18554-18559. DOI: 10.1073/pnas.1107409108
[17]
B. Lin, M. Xu. Does China become the “pollution heaven” in South-South trade? Evidence from Sino-Russian trade. Sci Total Environ, 666 (2019), pp. 964-974
[18]
S. Martinez, M. Marchamalo, S. Alvarez. Organization environmental footprint applying a multi-regional input-output analysis: a case study of a wood parquet company in Spain. Sci Total Environ, 618 (2018), pp. 7-14. DOI: 10.53689/int.v1i4.18
[19]
P. Wang, Y. Chen, J. Hu, H. Zhang, Q. Ying. Attribution of tropospheric ozone to NOx and VOC emissions: considering ozone formation in the transition regime. Environ Sci Technol, 53 (3) (2019), pp. 1404-1412. DOI: 10.1021/acs.est.8b05981
[20]
P. Wang, T. Wang, Q. Ying. Regional source apportionment of summertime ozone and its precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model. Atmos Environ, 224 (2020), p. 117337
[21]
X. Yang, K. Wu, Y. Lu, S. Wang, Y. Qiao, X. Zhang, et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: role of synoptic forcing and regional transport. Environ Pollut, 278 (2021), Article 116845
[22]
X. Lei, H. Cheng, J. Peng, H. Jiang, X. Lyu, P. Zeng, et al. Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. Atmos Environ, 246 (2021), Article 118093
[23]
C. Gong, H. Liao, L. Zhang, X. Yue, R. Dang, Y. Yang, et al. Persistent ozone pollution episodes in north China exacerbated by regional transport. Environ Pollut, 265 (2020), Article 115056
[24]
L.K. Xue, T. Wang, J. Gao, A.J. Ding, X.H. Zhou, D.R. Blake, et al. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmos Chem Phys, 14 (23) (2014), pp. 13175-13188. DOI: 10.5194/acp-14-13175-2014
[25]
G.E. Halkos, K.D. Tsilika. A new vision of classical multi-regional input-output models. Comput Econ, 51 (3) (2018), pp. 571-594. DOI: 10.1007/s10614-016-9624-x
[26]
M. Crippa, E. Solazzo, G. Huang, D. Guizzardi, E. Koffi, M. Muntean, et al.High resolution temporal profiles in the emissions database for global atmospheric research. Sci Data, 7 (1) (2020), p. 121
[27]
A.B. Guenther, X. Jiang, C.L. Heald, T. Sakulyanontvittaya, T. Duhl, L.K. Emmons, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev, 5 (6) (2012), pp. 1471-1492. DOI: 10.5194/gmd-5-1471-2012
[28]
C. Wiedinmyer, S.K. Akagi, R.J. Yokelson, L.K. Emmons, J.A. Al-Saadi, J.J. Orlando, et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev, 4 (3) (2011), pp. 625-641. DOI: 10.5194/gmd-4-625-2011
[29]
J.L. Hu, J.J. Chen, Q. Ying, H. Zhang. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys, 16 (16) (2016), pp. 10333-10350. DOI: 10.5194/acp-16-10333-2016
[30]
Y. Wang, S. Zhu, J. Ma, et al. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci Total Environ, 768 (2021), Article 144796
[31]
P. Wang, J. Shen, S. Zhu, M. Gao, J. Ma, J. Liu, et al. The aggravated short-term PM2.5-related health risk due to atmospheric transport in the Yangtze River Delta. Environ Pollut, 275 (2021), Article 116672
[32]
H. Luo, X. Tang, H. Wu, L. Kong, Q. Wu, K. Cao, et al. The Impact of the numbers of monitoring stations on the national and regional air quality assessment in China during 2013-18. Adv Atmos Sci, 39 (10) (2022), pp. 1709-1720. DOI: 10.1007/s00376-022-1346-5
[33]
M. Ezzati, A.D. Lopez, A. Rodgers, C.J.L. Murray. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva (2004)
[34]
P. Yin, R. Chen, L. Wang, X. Meng, C. Liu, Y. Niu, et al. Ambient ozone pollution and daily mortality: a nationwide study in 272 Chinese cities. Environ Health Perspect, 125 (11) (2017), Article 117006
[35]
S.S. Lim, T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet, 380 (9859) (2012), pp. 2224-2260
[36]
H. Liu, S. Liu, B.R. Xue, Z. Lv, Z. Meng, X.F. Yang, et al. Ground-level ozone pollution and its health impacts in China. Atmos Environ, 173 (2018), pp. 223-230
[37]
J.E. Dobson, E.A. Bright, P.R. Coleman, R.C. Durfee, B.A. Worley. LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sensing, 66 (7) (2000), pp. 849-857
[38]
M. Gao, S.K. Guttikunda, G.R. Carmichael, Y. Wang, Z. Liu, C.O. Stanier, et al. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci Total Environ, 511 (2015), pp. 553-561
[39]
J. Sánchez-balseca, A. Pérez-foguet. Spatially-structured human mortality modelling using air pollutants with a compositional approach. Sci Total Environ, 813 (2022), Article 152486
[40]
S. Wang, J. Wu. Spatial heterogeneity of the associations of economic and health care factors with infant mortality in China using geographically weighted regression and spatial clustering. Soc Sci Med, 263 (2020), p. 113287
[41]
W.B. Shao, F.Y. Li, X. Cao, Z. Tang, Y. Bai, S. Yang. Reducing export-driven CO2 and PM emissions in China’s provinces: a structural decomposition and coordinated effects analysis. J Clean Prod, 274 (2020), Article 123101
[42]
X. Yang, W.Z. Zhang, J. Fan, J.H. Yu, H. Zhao. Transfers of embodied PM2.5 emissions from and to the north China region based on a multiregional input-output model. Environ Pollut, 235 (2018), pp. 381-393
[43]
X. Huang, A. Ding, J. Gao, B. Zheng, D. Zhou, X. Qi, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev, 8 (2) (2021), Article nwaa137
[44]
K.J. Maji, A. Namdeo.Continuous increases of surface ozone and associated premature mortality growth in China during2015-2019. Environ Pollut, 269 (2021), p. 116183
[45]
L. Liu, L. Hu, Y. Liu, H.K. Wang. Modeling of the health impacts of ambient ozone pollution in China and India. Atmos Environ, 267 (2021), Article 118753
[46]
S.K. Sahu, S. Liu, S. Liu, D. Ding, J. Xing. Ozone pollution in China: background and transboundary contributions to ozone concentration & related health effects across the country. Sci Total Environ, 761 (2021), Article 144131
[47]
M. Kang, J. Hu, H. Zhang, Q. Ying. Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Sci Total Environ, 813 (2022), Article 151922
AI Summary AI Mindmap
PDF(2385 KB)

Accesses

Citations

Detail

Sections
Recommended

/