Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity

Yilong Yang, Shipo Wu, Yudong Wang, Fangze Shao, Peng Lv, Ruihua Li, Xiaofan Zhao, Jun Zhang, Xiaopeng Zhang, Jianmin Li, Lihua Hou, Junjie Xu, Wei Chen

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 127-139.

PDF(6288 KB)
PDF(6288 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 127-139. DOI: 10.1016/j.eng.2022.12.007
Research
Article

Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity

Author information +
History +

Abstract

Recombinant adenovirus serotype 5 (Ad5) vector has been widely applied in vaccine development targeting infectious diseases, such as Ebola virus disease and coronavirus disease 2019 (COVID-19). However, the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines. Thus, there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors. Herein, we address this need by utilizing biocompatible nanoparticles to modulate Ad5-host interactions. We show that positively charged human serum albumin nanoparticles ((+)HSAnp), which are capable of forming a complex with Ad5, significantly increase the transgene expression of Ad5 in both coxsackievirus-adenovirus receptor-positive and -negative cells. Furthermore, in charge- and dose-dependent manners, Ad5/(+)HSAnp complexes achieve robust (up to 227-fold higher) and long-term (up to 60 days) transgene expression in the lungs of mice following intranasal instillation. Importantly, in the presence of preexisting anti-Ad5 immunity, complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity. These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.

Graphical abstract

Keywords

Adenovirus serotype 5 / Vaccine / Preexisting immunity / Nanoparticles / Transgene expression

Cite this article

Download citation ▾
Yilong Yang, Shipo Wu, Yudong Wang, Fangze Shao, Peng Lv, Ruihua Li, Xiaofan Zhao, Jun Zhang, Xiaopeng Zhang, Jianmin Li, Lihua Hou, Junjie Xu, Wei Chen. Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity. Engineering, 2023, 27(8): 127‒139 https://doi.org/10.1016/j.eng.2022.12.007

References

[1]
J.L. Excler, M. Saville, S. Berkley, J.H. Kim. Vaccine development for emerging infectious diseases. Nat Med, 27 (4) (2021), pp. 591-600. DOI: 10.1038/s41591-021-01301-0
[2]
S. Rauch, E. Jasny, K.E. Schmidt, B. Petsch. New vaccine technologies to combat outbreak situations. Front Immunol, 9 (2018), p. 1963.
[3]
S.A. Halperin, L. Ye, D. MacKinnon-Cameron, B. Smith, P.E. Cahn, G.M. Ruiz-Palacios, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet, 399 (10321) (2022), pp. 237-248.
[4]
F.C. Zhu, X.H. Guan, Y.H. Li, J.Y. Huang, T. Jiang, L.H. Hou, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 396 (10249) (2020), pp. 479-488.
[5]
F.C. Zhu, Y.H. Li, X.H. Guan, L.H. Hou, W.J. Wang, J.X. Li, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 395 (10240) (2020), pp. 1845-1854.
[6]
M.P. Grobusch, A. Goorhuis. Safety and immunogenicity of a recombinant adenovirus vector-based Ebola vaccine. Lancet, 389 (10069) (2017), pp. 578-580.
[7]
J.E. Ledgerwood, A.D. DeZure, D.A. Stanley, E.E. Coates, L. Novik, M.E. Enama, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med, 376 (10) (2017), pp. 928-938
[8]
F.C. Zhu, L.H. Hou, J.X. Li, S.P. Wu, P. Liu, G.R. Zhang, et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China:preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet, 385 (9984) (2015), pp. 2272-2279.
[9]
F.C. Zhu, A.H. Wurie, L.H. Hou, Q. Liang, Y.H. Li, J.B. Russell, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 389 (10069) (2017), pp. 621-628.
[10]
Q. Guo, J.F. Chan, V.K. Poon, S. Wu, C.C. Chan, L. Hou, et al. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of Zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J Infect Dis, 218 (3) (2018), pp. 365-377. DOI: 10.1093/infdis/jiy187
[11]
B.L. Bullard, B.N. Corder, D.N. Gordon, T.C. Pierson, E.A. Weaver. Characterization of a species E adenovirus vector as a Zika virus vaccine. Sci Rep, 10 (1) (2020), p. 3613.
[12]
F. Smaill, M. Jeyanathan, M. Smieja, M.F. Medina, N. Thanthrige-Don, A. Zganiacz, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med, 5(205):205ra134 (2013)
[13]
R.N. Van Zyl-Smit, A. Esmail, M.E. Bateman, R. Dawson, J. Goldin, E. van Rikxoort, et al. Safety and immunogenicity of adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A randomized trial. Am J Respir Crit Care Med, 195 (9) (2017), pp. 1171-1180.
[14]
H. Fausther-Bovendo, G.P. Kobinger. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?. Hum Vaccin Immunother, 10 (10) (2014), pp. 2875-2884. DOI: 10.4161/hv.29594
[15]
F.J.D. Mennechet, O. Paris, A.R. Ouoba, S. Salazar Arenas, S.B. Sirima, G.R. Takoudjou Dzomo, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines, 18 (6) (2019), pp. 597-613. DOI: 10.1080/14760584.2019.1588113
[16]
B. Yu, Y. Zhou, H. Wu, Z. Wang, Y. Zhan, X. Feng, et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J Med Virol, 84 (9) (2012), pp. 1408-1414. DOI: 10.1002/jmv.23325
[17]
P.M. Folegatti, K.J. Ewer, P.K. Aley, B. Angus, S. Becker, S. Belij-Rammerstorfer, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249) (2020), pp. 467-478.
[18]
J. Sadoff, G. Gray, A. Vandebosch, V. Cárdenas, G. Shukarev, B. Grinsztejn, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med, 384 (23) (2021), pp. 2187-2201. DOI: 10.1056/nejmoa2101544
[19]
P. Abbink, A.A. Lemckert, B.A. Ewald, D.M. Lynch, M. Denholtz, S. Smits, et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol, 81 (9) (2007), pp. 4654-4663.
[20]
S. Lu. Heterologous prime-boost vaccination. Curr Opin Immunol, 21 (3) (2009), pp. 346-351.
[21]
R. Singh, K.T. Al-Jamal, L. Lacerda, K. Kostarelos. Nanoengineering artificial lipid envelopes around adenovirus by self-assembly. ACS Nano, 2 (5) (2008), pp. 1040-1050. DOI: 10.1021/nn8000565
[22]
C.R. O'Riordan, A. Lachapelle, C. Delgado, V. Parkes, S.C. Wadsworth, A.E. Smith, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther, 10 (8) (1999), pp. 1349-1358. DOI: 10.1089/10430349950018021
[23]
Q. Zeng, J. Han, D. Zhao, T. Gong, Z. Zhang, X. Sun. Protection of adenovirus from neutralizing antibody by cationic PEG derivative ionically linked to adenovirus. Int J Nanomedicine, 7 (2012), pp. 985-997.
[24]
J.L. Domingo, J. Rovira. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res, 187 (2020), Article 109650.
[25]
R. Cazzolla Gatti, A. Velichevskaya, A. Tateo, N. Amoroso, A. Monaco. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy. Environ Pollut, 267 (2020), Article 115471.
[26]
C. Sattler, F. Moritz, S. Chen, B. Steer, D. Kutschke, M. Irmler, et al. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol, 14 (1) (2017), p. 2.
[27]
H. Chen, X. Zheng, J. Nicholas, S.T. Humes, J.C. Loeb, S.E. Robinson, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J, 14 (1) (2017), p. 242. DOI: 10.1007/s11726-017-1008-9
[28]
B. Borrego, G. Lorenzo, J.D. Mota-Morales, H. Almanza-Reyes, F. Mateos, E. López-Gil, et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine, 12 (5) (2016), pp. 1185-1192.
[29]
C.C. Smallcombe, T.J. Harford, D.T. Linfield, S. Lechuga, V. Bokun, G. Piedimonte, et al. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol, 319 (3) (2020), pp. L481-L496. DOI: 10.1152/ajplung.00104.2020
[30]
P.K. Paik, L.P. James, G.J. Riely, C.G. Azzoli, V.A. Miller, K.K. Ng, et al. A phase 2 study of weekly albumin-bound paclitaxel (Abraxane®) given as a two-hour infusion. Cancer Chemother Pharmacol, 68 (5) (2011), pp. 1331-1337. DOI: 10.1007/s00280-011-1621-0
[31]
M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol, 5 (1) (2010), pp. 48-53. DOI: 10.1038/nnano.2009.341
[32]
S. Wu, G. Zhong, J. Zhang, L. Shuai, Z. Zhang, Z. Wen, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun, 11 (1) (2020), p. 4081.
[33]
D. Wu, Y. Yang, P. Xu, D. Xu, Y. Liu, R. Castillo, et al. Real-time quantification of cell internalization kinetics by functionalized boluminescent nanoprobes. Adv Mater, 31 (39) (2019), p. e1902469
[34]
D. Werk, S. Schubert, V. Lindig, H.P. Grunert, H. Zeichhardt, V.A. Erdmann, et al. Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor. Biol Chem, 386 (9) (2005), pp. 857-863.
[35]
P.W. Roelvink, A. Lizonova, J.G. Lee, Y. Li, J.M. Bergelson, R.W. Finberg, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol, 72 (10) (1998), pp. 7909-7915. DOI: 10.1128/jvi.72.10.7909-7915.1998
[36]
S.M. Sumida, D.M. Truitt, A.A. Lemckert, R. Vogels, J.H. Custers, M.M. Addo, et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol, 174 (11) (2005), pp. 7179-7185. DOI: 10.4049/jimmunol.174.11.7179
[37]
A. Nilchian, E. Plant, M.M. Parniewska, A. Santiago, A. Rossignoli, J. Skogsberg, et al. Induction of the coxsackievirus and adenovirus receptor in macrophages during the formation of atherosclerotic plaques. J Infect Dis, 222 (12) (2020), pp. 2041-2051. DOI: 10.1093/infdis/jiaa418
[38]
R.P. Tomko, R. Xu, L. Philipson. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA, 94 (7) (1997), pp. 3352-3356.
[39]
P. Sharma, A.O. Kolawole, S.M. Wiltshire, K. Frondorf, K. Excoffon. Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J Gen Virol, 93 (Pt 1) (2012), pp. 155-158. DOI: 10.1099/vir.0.036269-0
[40]
N. Okada, Y. Tsukada, S. Nakagawa, H. Mizuguchi, K. Mori, T. Saito, et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun, 282 (1) (2001), pp. 173-179.
[41]
R.J. Kaner, S. Worgall, P.L. Leopold, E. Stolze, E. Milano, C. Hidaka, et al. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol, 20 (3) (1999), pp. 361-370. DOI: 10.1165/ajrcmb.20.3.3398
[42]
S. Worgall, T.S. Worgall, K. Kostarelos, R. Singh, P.L. Leopold, N.R. Hackett, et al. Free cholesterol enhances adenoviral vector gene transfer and expression in CAR-deficient cells. Mol Ther, 1 (1) (2000), pp. 39-48.
[43]
L. Coughlan. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front Immunol, 11 (2020), p. 909.
[44]
C.N. Fries, E.J. Curvino, J.L. Chen, S.R. Permar, G.G. Fouda, J.H. Collier. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol, 16 (4) (2021), pp. 1-14. DOI: 10.1038/s41565-020-0739-9
[45]
M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan, O.A. Ortega-Rivera, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol, 15 (8) (2020), pp. 646-655. DOI: 10.1038/s41565-020-0737-y
[46]
X. Hou, T. Zaks, R. Langer, Y. Dong. Lipid nanoparticles for mRNA delivery. Nat Rev Mater, 6 (12) (2021), pp. 1078-1094. DOI: 10.1038/s41578-021-00358-0
[47]
A.M. Kahler, T.L. Cromeans, M.G. Metcalfe, C.D. Humphrey, V.R. Hill. Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine. Food Environ Virol, 8 (2) (2016), pp. 148-155. DOI: 10.1007/s12560-016-9232-x
[48]
N. Mendez, V. Herrera, L. Zhang, F. Hedjran, R. Feuer, S.L. Blair, et al. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials, 35 (35) (2014), pp. 9554-9561.
[49]
A. Wortmann, S. Vöhringer, T. Engler, S. Corjon, R. Schirmbeck, J. Reimann, et al. Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol Ther, 16 (1) (2008), pp. 154-162. DOI: 10.1038/sj.mt.6300306
[50]
J. Wagner, L. Li, J. Simon, L. Krutzke, K. Landfester, V. Mailänder, et al. Amphiphilic polyphenylene dendron conjugates for surface remodeling of adenovirus 5. Angew Chem Int Ed Engl, 59 (14) (2020), pp. 5712-5720. DOI: 10.1002/anie.201913708
[51]
Z. Ji, Z. Xie, Z. Zhang, T. Gong, X. Sun. Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials, 128 (2017), pp. 8-18.
[52]
H.E. Davis, M. Rosinski, J.R. Morgan, M.L. Yarmush. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J, 86 (2) (2004), pp. 1234-1242.
[53]
C. Wallis, J.L. Melnick. Virus aggregation as the cause of the non-neutralizable persistent fraction. J Virol, 1 (3) (1967), pp. 478-488. DOI: 10.1128/jvi.1.3.478-488.1967
[54]
S. Wu, J. Huang, Z. Zhang, J. Wu, J. Zhang, H. Hu, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis, 21 (12) (2021), pp. 1654-1664.
[55]
A.K. Patel, J.C. Kaczmarek, S. Bose, K.J. Kauffman, F. Mir, M.W. Heartlein, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater, 31 (8) (2019), p. e1805116
[56]
P. Mastorakos, A.L. da Silva, J. Chisholm, E. Song, W.K. Choi, M.P. Boyle, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci USA, 112 (28) (2015), pp. 8720-8725. DOI: 10.1073/pnas.1502281112
[57]
C.A. Fromen, T.B. Rahhal, G.R. Robbins, M.P. Kai, T.W. Shen, J.C. Luft, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine, 12 (3) (2016), pp. 677-687.
[58]
Q. Cheng, T. Wei, L. Farbiak, L.T. Johnson, S.A. Dilliard, D.J. Siegwart. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol, 15 (4) (2020), pp. 313-320. DOI: 10.1038/s41565-020-0669-6
AI Summary AI Mindmap
PDF(6288 KB)

Accesses

Citations

Detail

Sections
Recommended

/