The Nanoscale Density Gradient as a Structural Stabilizer for Glass Formation

Shaoxiong Zhou, Bangshao Dong, Yanguo Wang, Jingyu Qin, Weihua Wang

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 120-129.

PDF(2146 KB)
PDF(2146 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 120-129. DOI: 10.1016/j.eng.2023.01.010
Research
Article

The Nanoscale Density Gradient as a Structural Stabilizer for Glass Formation

Author information +
History +

Abstract

The rapid cooling of a metallic liquid (ML) results in short-range order (SRO) among the atomic arrangements and a disordered structure in the resulting metallic glass (MG). These phenomena cause various possible features in the microscopic structure of the MG, presenting a puzzle about the nature of the MGs’ microscopic structure beyond SRO. In this study, the nanoscale density gradient (NDG) originating from a sequential arrangement of clusters with different atomic packing densities (APDs), representing the medium-range structural heterogeneity in Zr60Cu30Al10 MG, was characterized using electron tomography (ET) combined with image simulations based on structure modeling. The coarse polyhedrons with distinct facets identified in the three-dimensional images coincide with icosahedron-like clusters and represent the spatial positions of clusters with high APDs. Rearrangements of the different clusters according to descending APD order in the glass-forming process are responsible for the NDG that stabilizes both the supercooled ML and the amorphous states and acts as a hidden rule in the transition from ML to MG.

Graphical abstract

Keywords

Rapid cooling / Amorphous solid / Density gradient / Electron tomography / Atomic clusters

Cite this article

Download citation ▾
Shaoxiong Zhou, Bangshao Dong, Yanguo Wang, Jingyu Qin, Weihua Wang. The Nanoscale Density Gradient as a Structural Stabilizer for Glass Formation. Engineering, 2023, 29(10): 120‒129 https://doi.org/10.1016/j.eng.2023.01.010

References

[1]
X. Ming, J.C. Huang, Z.J. Li. Materials-oriented integrated design and construction of structures in civil engineering—a review. Front Struct Civ Eng, 16 (1) ( 2022), pp. 24-44. DOI: 10.1007/s11709-021-0794-9
[2]
C.R. Cao, K.Q. Huang, J.A. Shi, D.N. Zheng, W.H. Wang, L. Gu, et al.. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat Commun, 10 (1) ( 2019), p. 1966
[3]
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 439 (7075) ( 2006), pp. 419-425. DOI: 10.1038/nature04421
[4]
S.R. Elliott.Physics of amorphous materials. (2nd ed.), Longman Scientific & Technical, Harlow ( 1990)
[5]
T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys Rev A, 40 (2) ( 1989), pp. 1045-1054
[6]
Z. Fan, J. Ding, E. Ma. Machine learning bridges local static structure with multiple properties in metallic glasses. Mater Today, 40 ( 2020), pp. 48-62
[7]
X. Xia, P.G. Wolynes. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA, 97 (7) ( 2000), pp. 2990-2994
[8]
X.J. Liu, Y. Xu, X. Hui, Z.P. Lu, F. Li, G.L. Chen, et al.. Metallic liquids and glasses: atomic order and global packing. Phys Rev Lett, 105 (15) ( 2010), Article 155501. DOI: 10.1103/PhysRevLett.105.155501
[9]
Z.W. Wu, M.Z. Li, W.H. Wang, K.X. Liu. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun, 6 (1) ( 2015), p. 6035
[10]
J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci USA, 111 (39) ( 2014), pp. 14052-14056. DOI: 10.1073/pnas.1412095111
[11]
J.D. Bernal. Geometry of the structure of monatomic liquids. Nature, 185 (4706) ( 1960), pp. 68-70. DOI: 10.1038/185068a0
[12]
D.B. Miracle. A structural model for metallic glasses. Nat Mater, 3 (10) ( 2004), pp. 697-702
[13]
D.B. Miracle. The efficient cluster packing model—an atomic structural model for metallic glasses. Acta Mater, 54 (16) ( 2006), pp. 4317-4336
[14]
J.S. Langer. Shear-transformation-zone theory of plastic deformation near the glass transition. Phys Rev E, 77 (2) ( 2008), Article 021502. DOI: 10.1103/PhysRevE.77.021502
[15]
A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, et al.. Direct observation of local atomic order in a metallic glass. Nat Mater, 10 (1) ( 2011), pp. 28-33. DOI: 10.1038/nmat2897
[16]
C.A. Angell. Formation of glasses from liquids and biopolymers. Science, 267 (5206) ( 1995), pp. 1924-1935. DOI: 10.1126/science.267.5206.1924
[17]
P.G. Debenedetti, F.H. Stillinger. Supercooled liquids and the glass transition. Nature, 410 (6825) ( 2001), pp. 259-267
[18]
Y.C. Hu, F.X. Li, M.Z. Li, H.Y. Bai, W.H. Wang. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat Commun, 6 (1) ( 2015), p. 8310
[19]
X.J. Liu, S.D. Wang, H.Y. Fan, Y.F. Ye, H. Wang, Y. Wu, et al.. Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics, 101 ( 2018), pp. 133-143
[20]
D.R. Nelson. Order, frustration, and defects in liquids and glasses. Phys Rev B, 28 (10) ( 1983), pp. 5515-5535
[21]
P. Zhang, J.J. Maldonis, Z. Liu, J. Schroers, P.M. Voyles. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun, 9 (1) ( 2018), p. 1129
[22]
T.J. Lei, L.R. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer, et al.. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses. Acta Mater, 164 ( 2019), pp. 165-170
[23]
T.C. Pekin, J. Ding, C. Gammer, B. Ozdol, C. Ophus, M. Asta, et al.. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nat Commun, 10 (1) ( 2019), p. 2445
[24]
Y.M. Lu, J.F. Zeng, S. Wang, B.A. Sun, Q. Wang, J. Lu, et al.. Structural signature of plasticity unveiled by nano-scale viscoelastic contact in a metallic glass. Sci Rep, 6 (1) ( 2016), p. 29357
[25]
B.F. Lu, L.T. Kong, K.J. Laws, W.Q. Xu, Z. Jiang, Y.Y. Huang, et al.. EXAFS and molecular dynamics simulation studies of Cu-Zr metallic glass: short-to-medium range order and glass forming ability. Mater Charact, 141 ( 2018), pp. 41-48
[26]
B. Huang, T.P. Ge, G.L. Liu, J.H. Luan, Q.F. He, Q.X. Yuan, et al.. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Mater, 155 ( 2018), pp. 69-79
[27]
L.P. Deo, S. Nikodemski. Atom probe analysis of Ni-Nb-Zr metallic glasses. Bull Mater Sci, 43 (1) ( 2020), p. 44
[28]
S. Hosokawa, J.F. Bérar, N. Boudet, W.C. Pilgrim, L. Pusztai, S. Hiroi, et al.. Detailed structural analysis of amorphous Pd40Cu40P20: comparison with the metallic glass Pd40Ni40P20 from the viewpoint of glass forming ability. J Non-Cryst Solids, 555 ( 2021), Article 120536
[29]
A.R. Yavari. A new order for metallic glasses. Nature, 439 (7075) ( 2006), pp. 405-406. DOI: 10.1038/439405a
[30]
Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang, J.Z. Jiang, et al.. Long-range topological order in metallic glass. Science, 332 (6036) ( 2011), pp. 1404-1406. DOI: 10.1126/science.1200324
[31]
J.D. Stevenson, J. Schmalian, P.G. Wolynes. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat Phys, 2 (4) ( 2006), pp. 268-274. DOI: 10.1038/nphys261
[32]
Y. Yang, J.F. Zeng, A. Volland, J.J. Blandin, S. Gravier, C.T. Liu. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Mater, 60 (13-14) ( 2012), pp. 5260-5272
[33]
Y. Yang, J. Zhou, F. Zhu, Y. Yuan, D.J. Chang, D.S. Kim, et al.. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 592 (7852) ( 2021), pp. 60-64
[34]
W. Ryu, R. Yamada, J. Saida. Tailored hardening of ZrCuAl bulk metallic glass induced by 2D gradient rejuvenation. NPG Asia Mater, 12 (1) ( 2020), p. 52
[35]
X. Li, H. Liu, L. Cheng. Symmetry-mismatch reconstruction of genomes and associated proteins within icosahedral viruses using cryo-EM. Biophys Rep, 2 (1) ( 2016), pp. 25-32
[36]
S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 117 (1) ( 1995), pp. 1-19
[37]
Y.Q. Cheng, E. Ma, H.W. Sheng. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett, 102 (24) ( 2009), Article 245501. DOI: 10.1103/PhysRevLett.102.245501
[38]
J.M. Cowley. Diffraction physics. North-Holland Publishing Corp., Amsterdam ( 1975)
[39]
B.J. Gellatly, J.L. Finney. Characterisation of models of multicomponent amorphous metals: the radical alternative to the Voronoi polyhedron. J Non-Cryst Solids, 50 (3) ( 1982), pp. 313-329
[40]
D.B. Miracle, W.S. Sanders, O.N. Senkov. The influence of efficient atomic packing on the constitution of metallic glasses. Philos Mag, 83 (20) ( 2003), pp. 2409-2428
[41]
S.G. Hao, C.Z. Wang, M.Z. Li, R.E. Napolitano, K.M. Ho. Dynamic arrest and glass formation induced by self-aggregation of icosahedral clusters in Zr1-xCux alloys. Phys Rev B, 84 (6) ( 2011), Article 064203. DOI: 10.1103/PhysRevB.84.064203
[42]
K. Wong, R.P. Krishnan, C. Chen, Q. Du, D. Yu, Z. Lu, et al.. The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids. Sci Rep, 8 (1) ( 2018), p. 2025
[43]
S.Q. Wu, C.Z. Wang, S.G. Hao, Z.Z. Zhu, K.M. Ho. Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass. Appl Phys Lett, 97 (2) ( 2010), Article 021901
[44]
L.C.R. Aliaga, L.V.P.C. Lima, G.M.B. Domingues, I.N. Bastos, G.A. Evangelakis. Experimental and molecular dynamics simulation study on the glass formation of Cu-Zr-Al alloys. Mater Res Express, 6 (4) ( 2019), Article 045202. DOI: 10.1088/2053-1591/aaf97e
[45]
D. Wei, J. Yang, M.Q. Jiang, B.C. Wei, Y.J. Wang, L.H. Dai. Revisiting the structure-property relationship of metallic glasses: common spatial correlation revealed as a hidden rule. Phys Rev B, 99 (1) ( 2019), Article 014115
[46]
A.L. Mackay. A dense non-crystallographic packing of equal spheres. Acta Cryst, 15 (9) ( 1962), pp. 916-918

This work was supported by the National Natural Science Foundation of China (51971093, 52192603, and 51501043).

Funding
the National Natural Science Foundation of China(51971093); the National Natural Science Foundation of China(52192603); the National Natural Science Foundation of China(51501043)
AI Summary AI Mindmap
PDF(2146 KB)

Accesses

Citations

Detail

Sections
Recommended

/