Large-Scale Vehicle Platooning: Advances and Challenges in Scheduling and Planning Techniques

Jing Hou, Guang Chen, Jin Huang, Yingjun Qiao, Lu Xiong, Fuxi Wen, Alois Knoll, Changjun Jiang

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 26-48.

PDF(4154 KB)
PDF(4154 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 26-48. DOI: 10.1016/j.eng.2023.01.012
Research
Review

Large-Scale Vehicle Platooning: Advances and Challenges in Scheduling and Planning Techniques

Author information +
History +

Abstract

Through vehicle-to-vehicle (V2V) communication, autonomizing a vehicle platoon can significantly reduce the distance between vehicles, thereby reducing air resistance and improving road traffic efficiency. The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions, thereby permitting large-scale vehicle platoon scheduling and planning, which is essential for industrialized platoon applications and generates significant economic benefits. Scheduling and planning are required in many aspects of vehicle platoon operation; here, we outline the advantages and challenges of a number of the most important applications, including platoon formation scheduling, lane-change planning, passing traffic light scheduling, and vehicle resource allocation. This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications. To this end, we first summarize the general techniques of vehicle platoon scheduling and planning, then list the primary scenarios for scheduling and planning technique application, and finally discuss current challenges and future development trends in platoon scheduling and planning. We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.

Graphical abstract

Keywords

Autonomous vehicle platoon / Autonomous driving / Connected and automated vehicles / Scheduling and planning techniques

Cite this article

Download citation ▾
Jing Hou, Guang Chen, Jin Huang, Yingjun Qiao, Lu Xiong, Fuxi Wen, Alois Knoll, Changjun Jiang. Large-Scale Vehicle Platooning: Advances and Challenges in Scheduling and Planning Techniques. Engineering, 2023, 28(9): 26‒48 https://doi.org/10.1016/j.eng.2023.01.012

References

[1]
E. Uhlemann. Platooning: connected vehicles for safety and efficiency. IEEE Veh Technol Mag, 11 (3) (2016), pp. 13-18
[2]
A. Saleem, A. Al Maashri, M.A. Al-Rahbi, M. Awadallah, H. Bourdoucen. Cooperative cruise controller for homogeneous and heterogeneous vehicle platoon system. Int J Automot Technol, 20 (6) (2019), pp. 1131-1143. DOI: 10.1007/s12239-019-0106-8
[3]
Zhang X, Li W, Guo K, Peng T, Huang Y. Longitudinal acceleration allocation for cooperative adaptive cruise control including platoon kinematics. In: Proceedings of 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE); 2019 Jun 12-14; Vancouver, BC, Canada. IEEE; 2019. p. 1512-7.
[4]
SAE. J3016:taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Report. New York City: SAE International; 2016.
[5]
Wang Z, Wu G, Barth MJ. A review on cooperative adaptive cruise control (CACC) systems: architectures, controls, and applications. In: Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4-7; Maui, HI, USA. IEEE; 2018. p. 2884-91.
[6]
Sawade O, Radusch I. Survey and classification of cooperative automated driver assistance systems. In: Proceedings of 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); 2015 Sep 6-9; Boston, MA, USA. IEEE; 2015. p.1-5.
[7]
Q. Li, W. Dai, Z. Yang, Q. Jia. Investigation on aerodynamic characteristics of tailing vehicle hood in a two-vehicle platoon. Proc Inst Mech Eng, 234 (1) (2020), pp. 283-299. DOI: 10.1177/0954407019857430
[8]
Z. Wang, Y. Bian, S.E. Shladover, G. Wu, S.E. Li, M.J. Barth. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intell Transp Syst Mag, 12 (1) (2019), pp. 4-24. DOI: 10.1117/12.2504774
[9]
S.E. Li, Y. Zheng, K. Li, L.Y. Wang, H. Zhang. Platoon control of connected vehicles from a networked control perspective: literature review, component modeling, and controller synthesis. IEEE Transp Vehicular Technol, 1 (2018)
[10]
S.E. Li, Y. Zheng, K. Li, Y. Wu, J.K. Hedrick, F. Gao, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Intell Transp Syst Mag, 9 (3) (2017), pp. 46-58
[11]
J. Guanetti, Y. Kim, F. Borrelli. Control of connected and automated vehicles: state of the art and future challenges. Annu Rev Contr, 45 (2018), pp. 18-40
[12]
Hou J, Yu J, Qu S, Wang F, Zi Y, Chen G. GA-based velocity planning using jerk as the encoding method for autonomous vehicles. In:Proceedings of 2019 3rd Conference on Vehicle Control and Intelligence (CVCI); 2019 Sep 21-22; Hefei, China. IEEE; 2019. p. 1-6.
[13]
W. Zhang, E. Jenelius, X. Ma. Freight transport platoon coordination and departure time scheduling under travel time uncertainty. Transp Res Part E Logist Transp Rev, 98 (2017), pp. 1-23
[14]
Wang H, Wang R, Wu R, Zhu K, Zhang L. IPCS: intersection platoon control scheme for non-traffic light community. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 3502-7.
[15]
Song M, Chen F, Ma X. A simulation of the traffic behavior with autonomous truck platoons based on cellular automaton. In: Proceedings of 2019 5th International Conference on Transportation Information and Safety (ICTIS); 2019 Jul 14-17; Liverpool, UK. IEEE; 2019. p. 416-23.
[16]
C. Chen, J. Jiang, N. Lv, S. Li. An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement learning on network edge. IEEE Access, 8 (2020), pp. 99059-99069. DOI: 10.1109/access.2020.2998015
[17]
U. Kohler. Stability of vehicle platoons. Transp Traffic Theory, 6 (1974), pp. 39-55. DOI: 10.2307/27757327
[18]
S. Feng, Y. Zhang, S.E. Li, Z. Cao, H.X. Liu, L. Li. String stability for vehicular platoon control: definitions and analysis methods. Annu Rev Contr, 47 (2019), pp. 81-97
[19]
S. Tsugawa, S. Jeschke, S.E. Shladover. A review of truck platooning projects for energy savings. IEEE Trans on Intell Veh, 1 (1) (2016), pp. 68-77
[20]
S. Mariani, G. Cabri, F. Zambonelli. Coordination of autonomous vehicles: taxonomy and survey. ACM Comput Surv, 54 (1) (2021), pp. 1-33. DOI: 10.26633/rpsp.2021.22
[21]
S. Malik, M.A. Khan, H. El-Sayed. Collaborative autonomous driving—a survey of solution approaches and future challenges. Sensors, 21 (11) (2021), p. 3783. DOI: 10.3390/s21113783
[22]
J. Riostorres, A.A. Malikopoulos. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst, 18 (5) (2017), pp. 1066-1077
[23]
D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen. A survey on platoon-based vehicular cyber-physical systems. IEEE Comm Surv Tutor, 18 (1) (2016), pp. 263-284
[24]
F.J. Ros, J.A. Martinez, P.M. Ruiz. A survey on modeling and simulation of vehicular networks: communications, mobility, and tools. Comput Commun, 43 (2014), pp. 1-15
[25]
X. Sun, F.R. Yu, P. Zhang. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans Intell Transp Syst, 23 (7) (2021), pp. 6240-6259. DOI: 10.1021/acs.chemmater.1c02136
[26]
R. Shaaban, S. Faruque. Cyber security vulnerabilities for outdoor vehicular visible light communication in secure platoon network: review, power distribution, and signal to noise ratio analysis. Phys Commun, 40 (2020), Article 101094
[27]
A. Ghosal, S.U. Sagong, S. Halder, K. Sahabandu, M. Conti, R. Poovendran, et al. Truck platoon security: state-of-the-art and road ahead. Comput Netw, 185 (2021), Article 107658
[28]
G.F. Riley, T.R. Henderson. The NS-3 network simulator. Modeling and Tools for Network Simulation, Springer, Berlin (2010)
[29]
R.T. Hay. SUMO: a history of modification. Mol Cell, 18 (1) (2005), pp. 1-12
[30]
Halati A, Lieu H, Walker S. CORSIM-corridor traffic simulation model. In: Proceedings of Traffic Congestion and Traffic Safety in the 21st Century. ASCE; 1997. p. 570-6.
[31]
M. Fellendorf, P. Vortisch. Microscopic traffic flow simulator VISSIM. Fundamentals of traffic simulation, Springer, Berlin (2010)
[32]
S. Stüdli, M.M. Seron, R.H. Middleton. From vehicular platoons to general networked systems: string stability and related concepts. Annu Rev Contr, 44 (2017), pp. 157-172
[33]
D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson, et al. Lane change and merge maneuvers for connected and automated vehicles: a survey. IEEE Trans Intell Veh, 1 (1) (2016), pp. 105-120
[34]
S. Badnava, N. Meskin, A. Gastli, M. Al-Hitmi, J. Ghommam, M. Mesbah, et al. Platoon transitional maneuver control system: a review. IEEE Access, 9 (2021), pp. 88327-88347. DOI: 10.1109/access.2021.3089615
[35]
Woodman R, Lu K, Higgins MD, Brewerton S, Jennings P, Birrell S. A human factors approach to defining requirements for low-speed autonomous vehicles to enable intelligent platooning. In: Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9-12; Paris, France. IEEE; 2019. p. 2371-6.
[36]
J. Axelsson. Safety in vehicle platooning: a systematic literature review. IEEE Trans Intell Transp Syst, 18 (5) (2017), pp. 1033-1045
[37]
J. Chen, H. Chen, J. Gao, J.A. Pattinson, R. Quaranta. A business model and cost analysis of automated platoon vehicles assisted by the internet of things. Proc Inst Mech Eng, 235 (2-3) (2021), pp. 721-731. DOI: 10.1177/0954407020949726
[38]
Tsugawa S. Results and issues of an automated truck platoon within the energy its project. In: Proceedings of 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8-11; Dearborn, MI, USA. IEEE; 2014. p. 642-7.
[39]
Kunze R, Ramakers R, Henning K, Jeschke S. Organization and operation of electronically coupled truck platoons on German motorways. In: Proceedings of Intelligent Robotics and Applications; 2009 Dec 16-18; Singapore, Singapore. Berlin: Springer; 2009. p. 135-46.
[40]
C. Nowakowski, S.E. Shladover, X.Y. Lu, D. Thompson, A. Kailas. Cooperative adaptive cruise control (CACC) for truck platooning: operational concept alternatives [Report]. University of California, Berkeley (2015)
[41]
K. Dey, L. Yan, X. Wang, Y. Wang, H. Shen, M. Chowdhury, et al. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC). IEEE Trans Intell Transp Syst, 17 (2) (2016), pp. 491-509
[42]
E. Larsson, G. Sennton, J. Larson. The vehicle platooning problem: computational complexity and heuristics. Transp Res Part C Emerg Technol, 60 (2015), pp. 258-277
[43]
J. Ma, X. Li, F. Zhou, J. Hu, B.B. Park. Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: computational issues and optimization. Transp Res Part B Methodol, 95 (2017), pp. 421-441
[44]
F. Zhou, X. Li, J. Ma. Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: theoretical analysis with generalized time geography. Transp Res Part B Methodol, 95 (2017), pp. 394-420
[45]
Duret A, Wang M, Leclercq L. Truck platooning strategy near merge: Heuristic-based solution and optimality conditions. In: Proceedings of 2018 Transportation Research Board Annual Meeting (TRB); 2018 Jan; Washington, DC, USA.HAL; 2018. p. 1-20.
[46]
Heinovski J, Dressler F. Platoon formation: optimized car to platoon assignment strategies and protocols. In:Proceedings of 2018 IEEE Vehicular Networking Conference (VNC); 2018 Dec 5- 7; Taipei, China. IEEE; 2018. p. 1-8.
[47]
P. Wang, Y. Jiang, L. Xiao, Y. Zhao, Y. Li. A joint control model for connected vehicle platoon and arterial signal coordination. J Intell Transp Syst, 24 (1) (2020), pp. 81-92. DOI: 10.1080/15472450.2019.1579093
[48]
X.J. Liang, S.I. Guler, V.V. Gayah. A heuristic method to optimize generic signal phasing and timing plans at signalized intersections using connected vehicle technology. Transp Res Part C Emerg Technol, 111 (2020), pp. 156-170
[49]
Dos Santos TC, Bruno DR, Osório FS, Wolf DF. Evaluation of lane-merging approaches for connected vehicles. In: Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9-12; Paris, France. IEEE; 2019. p. 1935-9.
[50]
M. Amoozadeh, H. Deng, C. Chuah, H.M. Zhang, D. Ghosal. Platoon management with cooperative adaptive cruise control enabled by VANET. Veh Commun, 2 (2) (2015), pp. 110-123
[51]
Li M, Gao X, Wen Y, Si J, Huang HH. Offline policy iteration based reinforcement learning controller for online robotic knee prosthesis parameter tuning. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, QC, Canada. IEEE; 2019. p. 2831-7.
[52]
Gu S, Yang L, Du Y, Chen G, Walter F, Wang J, et al. A review of safe reinforcement learning: methods, theory and applications. 2022. ArXiv:2205.10330.
[53]
J. Guan, G. Chen, J. Huang, Z. Li, L. Xiong, J. Hou, et al. A discrete soft actor-critic decision-making strategy with sample filter for freeway autonomous driving. IEEE Trans Vehicular Technol, 72 (2) (2022), pp. 2593-2598
[54]
R. Zhang, J. Hou, G. Chen, Z. Li, J. Chen, A. Knoll. Residual policy learning facilitates efficient model-free autonomous racing. IEEE Robot Autom Lett, 7 (4) (2022), pp. 11625-11632. DOI: 10.1109/lra.2022.3192770
[55]
Semsar-Kazerooni E, Verhaegh J, Ploeg J, Alirezaei M. Cooperative adaptive cruise control: an artificial potential field approach. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19-22; Gothenburg, Sweden. IEEE; 2016. p. 361-7.
[56]
E. Semsar-Kazerooni, K. Elferink, J. Ploeg, H. Nijmeijer. Multi-objective platoon maneuvering using artificial potential fields. IFAC PapersOnLine, 50 (1) (2017), pp. 15006-15011
[57]
K. Gao, D. Yan, F. Yang, J. Xie, L. Liu, R. Du, et al. Conditional artificial potential field-based autonomous vehicle safety control with interference of lane changing in mixed traffic scenario. Sensors, 19 (19) (2019), p. 4199. DOI: 10.3390/s19194199
[58]
McCrone DJ, Arasteh E, Jan FM. An artificial potential field approach to simulate cooperative adaptive cruise controlled vehicles. In: Proceedings of Dynamic Systems and Control Conference; 2017 Oct 11-13; Tysons, VA, USA. ASME; 2017. p. 58271.
[59]
Z. Huang, D. Chu, C. Wu, Y. He. Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans Intell Transp Syst, 20 (3) (2018), pp. 959-974. DOI: 10.3390/app8060959
[60]
Yu J, Hou J, Chen G. Improved safety-first A-star algorithm for autonomous vehicles. In: Proceedings of 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM); 2020 Dec 18-21; Shenzhen, China. IEEE; 2020. p. 706-10.
[61]
Mohamed A, Ren J, Lang H, El-Gindy M. Optimal collision free path planning for an autonomous articulated vehicle with two trailers. In: Proceedings of 2017 IEEE International Conference on Industrial Technology (ICIT); 2017 Mar 22-25; Toronto, ON, Canada. IEEE; 2017. p. 860-5.
[62]
K. Liang, S.V. De Hoef, H. Terelius, V. Turri, B. Besselink, J. Martensson, et al. Networked control challenges in collaborative road freight transport. Eur J Control, 30 (2016), pp. 2-14
[63]
Q. Ye, X. Chen, R. Liao, L. Yu. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings. Transp Res Part D Transp Environ, 77 (2019), pp. 120-131
[64]
M. Liu, M. Wang, S. Hoogendoorn. Optimal platoon trajectory planning approach at arterials. Transp Res Rec, 2673 (9) (2019), pp. 214-226. DOI: 10.1177/0361198119847474
[65]
Z. Huang, D. Chu, C. Wu, Y. He. Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans Intell Transp Syst, 20 (3) (2019), pp. 959-974. DOI: 10.1109/tits.2018.2841967
[66]
An G, Talebpour A. Lane-changing trajectory optimization to minimize traffic flow disturbance in a connected automated driving environment. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 1794-9.
[67]
L.D. Baskar, B. De Schutter, H. Hellendoorn. Optimal routing for automated highway systems. Transp Res Part C Emerg Technol, 30 (2013), pp. 1-22
[68]
Goli M, Eskandarian A. MPC-based lateral controller with look-ahead design for autonomous multi-vehicle merging into platoon. In: Proceedings of 2019 American Control Conference (ACC); 2019 Jul 10-12; Philadelphia, PA, USA. IEEE; 2019. p. 5284-91.
[69]
Liu H, Zhuang W, Yin G, Tang Z, Xu L.Strategy for heterogeneous vehicular platoons merging in automated highway system. In:Proceedings of 2018 Chinese Control and Decision Conference (CCDC); 2018 Jun 9- 11; Shenyang, China. IEEE; 2018. p. 2736-40.
[70]
V. Sokolov, J. Larson, T. Munson, J. Auld, D. Karbowski. Maximization of platoon formation through centralized routing and departure time coordination. Transp Res Rec, 2667 (1) (2017), pp. 10-16. DOI: 10.3141/2667-02
[71]
K.Y. Liang, J. Mårtensson, K.H. Johansson. Heavy-duty vehicle platoon formation for fuel efficiency. IEEE Trans Intell Transp Syst, 17 (4) (2015), pp. 1051-1061
[72]
R.W. Timmerman, M.A.A. Boon. Platoon forming algorithms for intelligent street intersections. Transp A Transp Sci, 17 (3) (2019), pp. 278-307
[73]
J. Mei, K. Zheng, L. Zhao, L. Lei, X. Wang. Joint radio resource allocation and control for vehicle platooning in ITE-V2V network. IEEE Trans Vehicular Technol, 67 (12) (2018), pp. 12218-12230. DOI: 10.1109/tvt.2018.2874722
[74]
G. Chen, J. Hou, J. Dong, Z. Li, S. Gu, B. Zhang, et al. Multiobjective scheduling strategy with genetic algorithm and time-enhanced A* planning for autonomous parking robotics in high-density unmanned parking lots. IEEE/ASME Trans Mechatron, 26 (3) (2020), pp. 1547-1557
[75]
S. Ding, X. Chen, L. Yu, X. Wang. Arterial offset optimization considering the delay and emission of platoon: a case study in Beijing. Sustainability, 11 (14) (2019), p. 3882. DOI: 10.3390/su11143882
[76]
F. Valdés, R. Iglesias, F. Espinosa, M.A. Rodríguez. An efficient algorithm for optimal routing applied to convoy merging manoeuvres in urban environments. Appl Intell, 37 (2) (2012), pp. 267-279. DOI: 10.1007/s10489-011-0326-8
[77]
I. Johansson, J. Jin, X. Ma, H. Pettersson. Look-ahead speed planning for heavy-duty vehicle platoons using traffic information. Transp Res Procedia, 22 (2017), pp. 561-569
[78]
Odekunle A, Gao W, Anayor C, Wang X, Chen Y. Predictive cruise control of connected and autonomous vehicles:an adaptive dynamic programming approach. In: Proceedings of SoutheastCon 2018; 2018 Apr 19-22; St. Petersburg, FL, USA. IEEE; 2018. p. 1-6.
[79]
J. Chen, J. Sun. Platoon separation strategy optimization method based on deep cognition of a driver’s behavior at signalized intersections. IEEE Access, 8 (2020), pp. 17779-17791. DOI: 10.1109/access.2020.2966236
[80]
W. Gao, Z.P. Jiang, K. Ozbay. Data-driven adaptive optimal control of connected vehicles. IEEE Trans Intell Transp Syst, 18 (5) (2016), pp. 1122-1133. DOI: 10.1109/ICSAI.2016.7811119
[81]
M. Huang, W. Gao, Y. Wang, Z.P. Jiang. Data-driven shared steering control of semi-autonomous vehicles. IEEE Trans Hum Mach Syst, 49 (4) (2019), pp. 350-361. DOI: 10.1109/thms.2019.2900409
[82]
J. Lan, D. Zhao, D. Tian. Data-driven robust predictive control for mixed vehicle platoons using noisy measurement. IEEE Trans Intell Transp Syst (2021), pp. 1-11
[83]
T. Zhang, Y. Zou, X. Zhang, N. Guo, W. Wang. Data-driven based cruise control of connected and automated vehicles under cyber-physical system framework. IEEE Trans Intell Transp Syst, 22 (10) (2020), pp. 6307-6319
[84]
J. Guo, H. Guo, J. Liu, D. Cao, H. Chen. Distributed data-driven predictive control for hybrid connected vehicle platoons with guaranteed robustness and string stability. IEEE Internet Things J, 9 (17) (2022), pp. 16308-16321. DOI: 10.1109/jiot.2022.3152165
[85]
J. Zhan, Z. Ma, L. Zhang. Data-driven modeling and distributed predictive control of mixed vehicle platoons. IEEE Trans Intell Veh, 8 (1) (2022), pp. 572-582
[86]
A.B. Parsa, R. Shabanpour, A. Mohammadian, J. Auld, T. Stephens. A data-driven approach to characterize the impact of connected and autonomous vehicles on traffic flow. Transp Lett, 13 (10) (2021), pp. 687-695. DOI: 10.1080/19427867.2020.1776956
[87]
D. Gettman, S.G. Shelby, L. Head, D.M. Bullock, N. Soyke. Data-driven algorithms for real-time adaptive tuning of offsets in coordinated traffic signal systems. Transp Res Rec, 2035 (1) (2007), pp. 1-9. DOI: 10.3141/2035-01
[88]
F. Jaffar, T. Farid, M. Sajid, Y. Ayaz, M.J. Khan. Prediction of drag force on vehicles in a platoon configuration using machine learning. IEEE Access, 8 (2020), pp. 201823-201834. DOI: 10.1109/access.2020.3035318
[89]
Buechel M, Knoll A.Deep reinforcement learning for predictive longitudinal control of automated vehicles. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems ITSC; 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 2391-7.
[90]
Y. Feng, D. He, Y. Guan. Composite platoon trajectory planning strategy for intersection throughput maximization. IEEE Trans Vehicular Technol, 68 (7) (2019), pp. 6305-6319. DOI: 10.1109/tvt.2019.2914163
[91]
Fan Y, Xiao X, Feng W.An anti-jamming game in VANET platoon with reinforcement learning. In:Proceedings of 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW); 2018 May 19- 21; Taichung, China. IEEE; 2018. p. 1-2.
[92]
Dos Santos TC, Wolf DF.Automated conflict resolution of lane change utilizing probability collectives. In:Proceedings of 19th International Conference on Advanced Robotics (ICAR); 2019 Dec 2- 6; Belo Horizonte, Brazil. IEEE; 2019. p. 623-8.
[93]
B. Li, Y. Zhang, Y. Feng, Y. Zhang, Y. Ge, Z. Shao. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated vehicles. IEEE Trans Intell Veh, 3 (3) (2018), pp. 340-350. DOI: 10.1109/tiv.2018.2843159
[94]
Zhang R, Chen G, Hou J, Li Z, Knoll A. PIPO: policy optimization with permutation-invariant constraint for distributed multi-robot navigation. In:Proceedings of 2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); 2022 Sep 20-22; Bedford, UK. IEEE; 2022. p. 1-7.
[95]
Johansson A, Nekouei E, Johansson KH, Mårtensson J. Multi-fleet platoon matching: a game-theoretic approach. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 2980-5.
[96]
Y. Liu, C. Zong, X. Han, D. Zhang, H. Zheng, C. Shi.Spacing allocation method for vehicular platoon: a cooperative game theory approach. Appl Sci, 10 (16) (2020), p. 5589. DOI: 10.3390/app10165589
[97]
Ma X, Zhao J, Li Q, Gong Y.Reinforcement learning based task offloading and take-back in vehicle platoon networks. In:Proceedings of 2019 IEEE International Conference on Communications Workshops (ICC Workshops); 2019 May 20- 24; Shanghai, China. IEEE; 2019. p. 1-6.
[98]
Lobato W, Rosario D, Gerla M, Villas LA.Platoon-based driving protocol based on game theory for multimedia transmission over VANET. In: Proceedings of 2017 IEEE Global Communications Conference; 2017 Dec 4-8; Singapore, Singapore. IEEE; 2017. p. 1-6.
[99]
S. Gu, G. Chen, L. Zhang, J. Hou, Y. Hu, A. Knoll. Constrained reinforcement learning for vehicle motion planning with topological reachability analysis. Robotics, 11 (4) (2022), p. 81
[100]
M. Saeednia, M. Menendez. A consensus-based algorithm for truck platooning. IEEE Trans Intell Transp Syst, 18 (2) (2016), pp. 404-415
[101]
W. Wang, C. Wang, Y. Guo, X. Luo, Y. Gao. Self-triggered consensus of vehicle platoon system with time-varying topology. Front Neurorobot, 14 (2020), p. 53
[102]
P. Yang, Y. Tang, M. Yan, X. Zhu. Consensus based control algorithm for nonlinear vehicle platoons in the presence of time delay. Int J Control Autom Syst, 17 (3) (2019), pp. 752-764. DOI: 10.1007/s12555-017-0600-6
[103]
J. Wu, Y. Wang, L. Wang, Z. Shen, C. Yin. Consensus-based platoon forming for connected autonomous vehicles. IFAC PapersOnLine, 51 (31) (2018), pp. 801-806
[104]
S. Yu, R. Fu, Y. Guo, Q. Xin, Z. Shi. Consensus and optimal speed advisory model for mixed traffic at an isolated signalized intersection. Phys A, 531 (2019), Article 121789
[105]
Khamis MA, Gomaa W. Enhanced multiagent multi-objective reinforcement learning for urban traffic light control. In: Proceedings of 2012 11th International Conference on Machine Learning and Applications; 2012 Dec 12-15; Boca Raton, FL, USA. IEEE; 2012. p. 586-91.
[106]
Sharma S, Singh B.Cooperative reinforcement learning based adaptive resource allocation in V2V communication. In:Proceedings of 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); 2019 Mar 7- 8; Noida, India. IEEE; 2019. p. 489-94.
[107]
R. Elbert, J.K. Knigge, A. Friedrich. Analysis of decentral platoon planning possibilities in road freight transport using an agent-based simulation model. J Simul, 14 (1) (2020), pp. 64-75. DOI: 10.1080/17477778.2019.1675480
[108]
M. Saeednia, M. Menendez. Analysis of strategies for truck platooning: hybrid strategy. Transp Res Rec, 2547 (2547) (2016), pp. 41-48. DOI: 10.3141/2547-07
[109]
Johansson A, Mårtensson J. Game theoretic models for profit-sharing in multi-fleet platoons. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 3019-24.
[110]
J. Wu, S. Ahn, Y. Zhou, P. Liu, X. Qu. The cooperative sorting strategy for connected and automated vehicle platoons. Transp Res Part C Emerg Technol, 123 (2021), Article 102986
[111]
W.J. Lee, S.I. Kwag, Y.D. Ko. The optimal eco-friendly platoon formation strategy for a heterogeneous fleet of vehicles. Transp Res Part D Transp Environ, 90 (2021), Article 102664
[112]
J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, K. Zhang. Polaris: agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transp Res Part C Emerg Technol, 64 (2016), pp. 101-116
[113]
H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti. VANET security challenges and solutions: a survey. Veh Commun, 7 (2017), pp. 7-20
[114]
Huang Z, Zhuang W, Yin G, Xu L, Luo K. Cooperative merging for multiple connected and automated vehicles at highway on-ramps via virtual platoon formation. In: Proceedings of 2019 Chinese Control Conference (CCC); 2019 Jul 27-30; Guangzhou, China. IEEE; 2019. p. 6709-14.
[115]
Hao P, Wang Z, Wu G, Boriboonsomsin K, Barth M.Intra-platoon vehicle sequence optimization for ecocooperative adaptive cruise control. In:Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC); 2017 Oct 16- 19; Yokohama, Japan. IEEE; 2017. p. 1-6.
[116]
Farag A, Hussein A, Shehata OM, Garcia F, Tadjine HH, Matthes E.Dynamics platooning model and protocols for self-driving vehicles. In:Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV); 2019 Jun 9- 12; Paris, France. IEEE; 2019. p. 1974-80.
[117]
S. Karbalaieali, O.A. Osman, S. Ishak. A dynamic adaptive algorithm for merging into platoons in connected automated environments. IEEE Trans Intell Transp Syst, 21 (10) (2019), pp. 4111-4122
[118]
J. Wang, F. Ma, Y. Yu, S. Zhu, S.Y. Gelbal, B. Aksun-Guvenc, et al. Optimization design of the decentralized multi-vehicle cooperative controller for freeway ramp entrance. Int J Automot Technol, 22 (3) (2021), pp. 799-810. DOI: 10.1007/s12239-021-0073-8
[119]
R. Timmerman, M.A. Boon. Platoon forming algorithms for intelligent street intersections. Transp A Transp Sci, 17 (3) (2021), pp. 278-307. DOI: 10.1080/23249935.2019.1692962
[120]
Pongor G. OMNET: objective modular network testbed. In:Proceedings of International Workshop on Modeling, Analysis, and Simulation on Computer and Telecommunication Systems; 1993; San Diego, CA, USA. Society for Computer Simulation International; 1993. p. 323-6.
[121]
M. Saeednia, M. Menendez. A consensus-based algorithm for truck platooning. IEEE Trans Intell Transp Syst, 18 (2) (2017), pp. 404-415
[122]
Liang KY, Mårtensson J, Johansson KH.Fuel-saving potentials of platooning evaluated through sparse heavy duty vehicle position data. In:Proceedings of 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8- 11; Dearborn, MI, USA. IEEE; 2014. p. 1061-8.
[123]
Larson J, Kammer C, Liang KY, Johansson KH.Coordinated route optimization for heavy-duty vehicle platoons. In:Proceedings of 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013); 2013 Oct 6- 9; The Hague, Netherlands. IEEE; 2013. p. 1196-202.
[124]
S. Van de Hoef. Fuel-efficient centralized coordination of truck platooning dissertation KTH Royal Institute of Technology, Stockholm (2016)
[125]
Adler A, Miculescu D, Karaman S. Optimal policies for platooning and ride sharing in autonomy-enabled transportation; In: Proceedings of Algorithmic Foundations of Robotics XII. 2016 Dec 18-20; San Francisco, CA, USA. Springer; 2020. p. 848-63.
[126]
A.K. Bhoopalam, N. Agatz, R. Zuidwijk. Planning of truck platoons: a literature review and directions for future research. Transp Res Part B Methodol, 107 (2018), pp. 212-228
[127]
A.I.M. Medina, N. van de Wouw, H. Nijmeijer. Cooperative intersection control based on virtual platooning. IEEE Trans Intell Transp Syst, 19 (6) (2017), pp. 1727-1740
[128]
Bashiri M, Jafarzadeh H, Fleming CH. PAIM: platoon-based autonomous intersection management. 2018. ArXiv:1809.06956.
[129]
S. Stebbins, M. Hickman, J. Kim, H.L. Vu. Characterising green light optimal speed advisory trajectories for platoon-based optimisation. Transp Res Part C Emerg Technol, 82 (2017), pp. 43-62
[130]
Bashiri M, Fleming CH. A platoon-based intersection management system for autonomous vehicles. In: Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11-14; Los Angeles, CA, USA. IEEE; 2017. p. 667-72.
[131]
B. Liu, A. El Kamel. V2X-based decentralized cooperative adaptive cruise control in the vicinity of intersections. IEEE Trans Intell Transp Syst, 17 (3) (2016), pp. 644-658
[132]
Gunther HJ, Kleinau S, Trauer O, Wolf L.Platooning at traffic lights. In:Proceedings of Intelligent Vehicles Symposium (IV); 2016 Jun 19- 22; Gothenburg, Sweden. IEEE; 2016. p. 1047-53.
[133]
Masi S, Xu P, Bonnifait P. Adapting the virtual platooning concept to roundabout crossing. In: Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV); 2018 Jun 26-30; Changshu, China. IEEE; 2018. p. 1366-72.
[134]
X. Wu, H. Yang, B. Mainali, P. Pokharel, S. Chiu. Development of platoon-based actuated signal control systems to coordinated intersections: application in corridors in Houston. IET Intell Transp Syst, 14 (2) (2019), pp. 127-137
[135]
Kong X, Wu J, Qu X. An online processing method for the cooperative control of connected and automated vehicle platoons. Smart Transp Syst 2021;133-99.
[136]
H. Namazi, A. Taghavipour. Traffic flow and emissions improvement via vehicle-to-vehicle and vehicle-to-infrastructure communication for an intelligent intersection. Asian J Control, 23 (5) (2021), pp. 2328-2342. DOI: 10.1002/asjc.2508
[137]
Wu Y, Hou J, Chen G, Knoll A. Trajectory prediction based on planning method considering collision risk. In: Proceedings of 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM); 2020 Dec 18-21; Shenzhen, China. IEEE, 2020. p. 466-70.
[138]
G. Dai, H. Wang, W. Wang. Signal optimization and coordination for bus progression based on maxband. KSCE J Civ Eng, 20 (2) (2016), pp. 890-898. DOI: 10.1007/s12205-015-1516-4
[139]
Dong Y, Xu Y, Li D, Hu C, Xi Y. Model of platoon evolution in LVM scenario. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 2932-7.
[140]
Chen J, ShangGuan W, Cai B, Bhat M, Du Y. Intelligent platoon operating slot optimization method based on drivers’ overtaking behavior. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27-30; Auckland, New Zealand. IEEE; 2019. p. 1947-52.
[141]
S. Lee, C. Oh, S. Hong. Exploring lane change safety issues for manually driven vehicles in vehicle platooning environments. IET Intell Transp Syst, 12 (9) (2018), pp. 1142-1147. DOI: 10.1049/iet-its.2018.5167
[142]
D. Swaroop, J.K. Hedrick, C. Chien, P. Ioannou. A comparision of spacing and headway control laws for automatically controlled vehicles. Veh Syst Dyn, 23 (1) (1994), pp. 597-625. DOI: 10.1080/00423119408969077
[143]
H. Liang, S. Zhou, X. Liu, F. Zheng, X. Hong, X. Zhou, et al. A dynamic resource allocation model based on SMDP and DRL algorithm for truck platoon in vehicle network. IEEE Internet Things J, 9 (12) (2021), pp. 10295-10305
[144]
Xu R, Li J, Dong X, Yu H, Ma J. Bridging the domain gap for multi-agent perception. 2022. ArXiv:2210.08451.
[145]
Araújo F, Serra HP, Rosário D, Cerqueira E. Optimized-selection model of relay nodes in platoon-based vehicular ad-hoc networks. In: Proceedings of the 10th Latin America Networking Conference; 2018 Oct 3-4; São Paulo, Brazil. ACM; 2018. p. 18-24.
[146]
H. Peng, D. Li, Q. Ye, K. Abboud, H. Zhao, W. Zhuang, et al. Resource allocation for cellular-based intervehicle communications in autonomous multiplatoons. IEEE Trans Vehicular Technol, 66 (12) (2017), pp. 11249-11263
[147]
Cao L, Yin H.Resource allocation for vehicle platooning in 5G NR-V2X via deep reinforcement learning. 2021. ArXiv:2101.10424.
[148]
V. Lesch, C. Krupitzer, K. Stubenrauch, N. Keil, C. Becker, S. Kounev, et al. A comparison of mechanisms for compensating negative impacts of system integration. Future Gener Comput Syst, 116 (2021), pp. 117-131
[149]
Parvini M, Javan MR, Mokari N, Abbasi B, Jorswieck EA.AOI-aware resource allocation for platoon-based C-V2X networks via multi-agent multi-task reinforcement learning. 2021. ArXiv:2105.04196.
[150]
Zheng D, Chen Y, Wei L, Jiao B, Hanzo L. Dynamic NOMA-based computation offloading in vehicular platoons. 2021. ArXiv:2103.17049.
[151]
H. Song, D. Ding, H. Dong, X. Yi. Distributed filtering based on Cauchy-kernel-based maximum correntropy subject to randomly occurring cyber-attacks. Automatica, 135 (2022), Article 110004
[152]
X. Wang, D. Ding, X. Ge, Q.L. Han. Neural-network-based control for discrete-time nonlinear systems with Denialof-service attack: the adaptive event-triggered case. Int J Robust Nonlinear Control, 32 (5) (2022), pp. 2760-2779. DOI: 10.1002/rnc.5831
[153]
D. Ding, Q.L. Han, Y. Xiang, X. Ge, X.M. Zhang. A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 275 (2018), pp. 1674-1683
[154]
X.M. Zhang, Q.L. Han, X. Ge, D. Ding, L. Ding, D. Yue, et al. Networked control systems: a survey of trends and techniques. IEEE/CAA J Automat Sinica, 7 (1) (2019), pp. 1-17
[155]
Ge X, Han QL, Wang Z, Ding D. Dynamic event-triggered vehicle platooning control: trade-off between communication efficiency and platoon performance. In: Proceedings of 2021 40th Chinese Control Conference (CCC); 2021 Jul 26-28; Shanghai, China. IEEE; 2021. p. 4883-8.
[156]
X. Ge, S. Xiao, Q.L. Han, X.M. Zhang, D. Ding. Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J Automat Sinica, 9 (1) (2022), pp. 31-46. DOI: 10.1109/jas.2021.1004060
[157]
Chan E, Gilhead P, Jelinek P, Krejci P, Robinson T. Cooperative control of Sartre automated platoon vehicles. In: Proceedings of 19th ITS World Congress; 2012 Oct 22-26; Vienna, Austria. America ITS; 2012. p. 22-6.
[158]
Q. Deng. A general simulation framework for modeling and analysis of heavy-duty vehicle platooning. IEEE Trans Intell Transp Syst, 17 (11) (2016), pp. 3252-3262
[159]
O. Karoui, E. Guerfala, A. Koubaa, M. Khalgui, E. Tovard, N. Wu, et al. Performance evaluation of vehicular platoons using Webots. IET Intell Transp Syst, 11 (8) (2017), pp. 441-449. DOI: 10.1049/iet-its.2017.0036
[160]
A. Tuchner, J. Haddad. Vehicle platoon formation using interpolating control: a laboratory experimental analysis. Transp Res Part C Emerg Technol, 84 (2017), pp. 21-47
[161]
J. Ploeg, E. Semsar-Kazerooni, A.I.M. Medina, J.F. de Jongh, J. van de Sluis, A. Voronov, et al. Cooperative automated maneuvering at the 2016 grand cooperative driving challenge. IEEE Trans Intell Transp Syst, 19 (4) (2017), pp. 1213-1226
[162]
R. Hult, F.E. Sancar, M. Jalalmaab, A. Vijayan, A. Severinson, M. Di Vaio, et al. Design and experimental validation of a cooperative driving control architecture for the grand cooperative driving challenge 2016. IEEE Trans Intell Transp Syst, 19 (4) (2018), pp. 1290-1301. DOI: 10.1109/tits.2017.2750083
[163]
I.P. Alonso, R.I. Gonzalo, J. Alonso, Á. García-Morcillo, D. Fernández-Llorca, M.Á. Sotelo. The experience of drivertive-driverless cooperative vehicle-team in the 2016 GCDC. IEEE Trans Intell Transp Syst, 19 (4) (2017), pp. 1322-1334
[164]
Eilers S, Mårtensson J, Pettersson H, Pillado M, Gallegos D, Tobar M, et al. Companion—towards co-operative platoon management of heavy-duty vehicles. In: Proceedings of 2015 IEEE 18th International Conference on Intelligent Transportation Systems; 2015 Sep 15-18; Gran Canaria, Spain. IEEE; 2015. p. 1267-73.
[165]
J. Zhang, P.A. Ioannou, A. Chassiakos. Automated container transport system between inland port and terminals. ACM Trans Model Comput Simulat, 16 (2) (2006), pp. 95-118. DOI: 10.1145/1138464.1138465
[166]
Pourmohammad-Zia N, Schulte F, Souravlias D, Negenborn RR. Platooning of automated ground vehicles to connect port and hinterland:a multi-objective optimization approach. In: Proceedings of International Conference on Computational Logistics; 2020 Sep 28-30; Enschede, the Netherlands. Springer Cam; 2020. p. 780.
[167]
S. Chen, H. Wang, Q. Meng. Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization. Transp Res Part B Methodol, 154 (2021), pp. 289-315
[168]
S. Tsugawa. An overview on an automated truck platoon within the energy its project. IF AC Proc, 46 (21) (2013), pp. 41-46
[169]
A.A. Ceder. Public-transport vehicle scheduling with multi vehicle type. Transp Res Part C Emerg Technol, 19 (3) (2011), pp. 485-497
[170]
S. Hassold, A. Ceder. Multiobjective approach to creating bus timetables with multiple vehicle types. Transp Res Rec, 2276 (1) (2012), pp. 56-62. DOI: 10.3141/2276-07
[171]
S. Hassold, A.A. Ceder. Public transport vehicle scheduling featuring multiple vehicle types. Transp Res Part B Methodol, 67 (2014), pp. 129-143
[172]
Q.W. Guo, J.Y. Chow, P. Schonfeld. Stochastic dynamic switching in fixed and flexible transit services as market entry-exit real options. Transp Res Procedia, 23 (2017), pp. 380-399
[173]
Z. Dai, X.C. Liu, X. Chen, X. Ma. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: a dynamic programming approach. Transp Res Part C Emerg Technol, 114 (2020), pp. 598-619
[174]
Z. Chen, X. Li, X. Zhou. Operational design for shuttle systems with modular vehicles under oversaturated traffic: continuous modeling method. Transp Res Part B Methodol, 132 (2020), pp. 76-100
[175]
Z. Chen, X. Li, X. Zhou. Operational design for shuttle systems with modular vehicles under oversaturated traffic: discrete modeling method. Transp Res Part B Methodol, 122 (2019), pp. 1-19
[176]
X. Shi, Z. Chen, M. Pei, X. Li. Variable-capacity operations with modular transits for shared-use corridors. Transp Res Rec, 2674 (9) (2020), pp. 230-244. DOI: 10.1177/0361198120928077
[177]
X. Liu, X. Qu, X. Ma. Improving flex-route transit services with modular autonomous vehicles. Transp Res Part E Logist Trans Rev, 149 (2021), Article 102331
[178]
Z. Chen, X. Li, X. Qu. A continuous model for designing corridor systems with modular autonomous vehicles enabling station-wise docking. Transport Sci, 56 (1) (2022), pp. 1-30
[179]
W. Scholte, P.W. Zegelaar, H. Nijmeijer. A control strategy for merging a single vehicle into a platoon at highway on-ramps. Transp Res Part C Emerg Technol, 136 (2022), Article 103511
[180]
H.C.H. Hsu, A. Liu. Kinematic design for platoon-lane-change maneuvers. IEEE Trans Intell Transp Syst, 9 (1) (2008), pp. 185-190
[181]
Featherstone C, Lowson M.Safety of automated passenger vehicle platooning. In:Proceedings of 12th World Congress on Intelligent Transport Systems; 2005 Nov 6- 10; San Francisco, CA, USA. ITS America; 2005. p. 1665-73.
[182]
N. Li, S. Chen, J. Zhu, D.J. Sun. A platoon-based adaptive signal control method with connected vehicle technology. Comput Intell Neuro, 2020 (2020), p. 2764576
[183]
Zhang Y, Su R, Zhang Y.A dynamic optimization model for bus schedule design to mitigate the passenger waiting time by dispatching the bus platoon. In:Proceedings of 2020 American Control Conference (ACC); 2020 Jul 1- 3; Denver, CO, USA. IEEE; 2020. p. 4096-101.
[184]
A. Paranjothi, M. Atiquzzaman, M.S. Khan. PMCD: platoon-merging approach for cooperative driving. Int Technol Lett, 3 (1) (2020), p. e139
[185]
G.D. Cameron, G.I. Duncan. Paramics—parallel microscopic simulation of road traffic. J Supercomput, 10 (1) (1996), pp. 25-53
[186]
W. Gao, J. Gao, K. Ozbay, Z. Jiang. Reinforcement-learning-based cooperative adaptive cruise control of buses in the Lincoln tunnel corridor with time-varying topology. IEEE Trans Intell Transp Syst, 20 (10) (2019), pp. 3796-3805. DOI: 10.1109/tits.2019.2895285
[187]
K. Shaaban, I. Kim. Comparison of Simtraffic and VISSIM microscopic traffic simulation tools in modeling roundabouts. Procedia Comput Sci, 52 (2015), pp. 43-50
[188]
L. Lu, T. Yun, L. Li, Y. Su, D. Yao. A comparison of phase transitions produced by Paramics, Transmodeler, and VISSIM. IEEE Intell Transp Syst Mag, 2 (3) (2010), pp. 19-24. DOI: 10.1080/00043125.2010.11519098
[189]
Seredynski M, Grzybek A. Coping with non-recurring congestion with distributed hybrid routing strategy. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jul 19-22; Gothenburg, Sweden. IEEE; 2016. p. 1121-7.
[190]
M. Gerla, L. Kleinrock. Vehicular networks and the future of the mobile internet. Comput Netw, 55 (2) (2011), pp. 457-469
[191]
De Rango F, Tropea M, Raimondo P, Santamaria AF, Fazio P.Bio inspired strategy for improving platoon management in the future autonomous electrical VANET environment. In:Proceedings of 2019 28th International Conference on Computer Communication and Networks (ICCCN); 2019 Jul 29-Aug 1; Valencia, Spain. IEEE; 2019. p. 1-7.
[192]
M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi, F. Hrizi, et al. ITETRIS: a modular simulation platform for the large scale evaluation of cooperative its applications. Simul Model Pract Theory, 34 (2013), pp. 99-125
[193]
Sommer C, Eckhoff D, Brummer A, Buse DS, Hagenauer F, Joerer S, et al. Veins: the open source vehicular network simulation framework. Recent Advances in Network Simulation. Online. Springer Cham; 2019.
[194]
Won M. L-platooning: a protocol for managing a long platoon with DSRC. 2019. ArXiv:1910.05192.
[195]
S.E. Shladover, D. Su, X.Y. Lu. Impacts of cooperative adaptive cruise control on freeway traffic flow. Transp Res Rec, 2324 (1) (2012), pp. 63-70. DOI: 10.3141/2324-08
[196]
L. Yu. Calibration of platoon dispersion parameters on the basis of link travel time statistics. Transp Res Rec, 1727 (1) (2000), pp. 89-94. DOI: 10.3141/1727-11
[197]
Sebe SM, Müller JP. PFARA: a platoon forming and routing algorithm for same-day deliveries. 2019. ArXiv:1912.08929.
[198]
M. Zhu, C. Liu, Y. Han. Approach to discovering companion patterns based on traffic data stream. IET Intell Transp Syst, 12 (10) (2018), pp. 1351-1359. DOI: 10.1049/iet-its.2018.5166
[199]
A. Saha, S. Chandra, I. Ghosh. Modeling platoon dispersion at signalized intersections in mixed traffic scenario. Arab J Sci Eng, 44 (5) (2019), pp. 4829-4838. DOI: 10.1007/s13369-018-3568-5
[200]
V. Punzo, M.T. Borzacchiello, B. Ciuffo. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data. Transp Res Part C Emerg Technol, 19 (6) (2011), pp. 1243-1262
[201]
Calvert SC, Mecacci G, Heikoop DD, De Sio FS. Full platoon control in truck platooning: a meaningful human control perspective. In:Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4- 7; Maui, HI, USA. IEEE; 2018. p. 3320-6.
[202]
G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, A. Knoll. Event-based neuromorphic vision for autonomous driving: a paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Process Mag, 37 (4) (2020), pp. 34-49. DOI: 10.1109/msp.2020.2985815
[203]
G. Chen, F. Wang, W. Li, L. Hong, J. Conradt, J. Chen, et al. Neuroiv: neuromorphic vision meets intelligent vehicle towards safe driving with a new database and baseline evaluations. IEEE Trans Intell Transp Syst, 23 (2) (2020), pp. 1171-1183
[204]
W. Liu, K. Quijano, M.M. Crawford. YOLOV5-TASSEL: detecting tassels in RGB UAV imagery with improved YOLOV5 based on transfer learning. IEEE J Sel Top Appl Earth Obs Remote Sens, 15 (2022), pp. 8085-8094. DOI: 10.1109/jstars.2022.3206399
[205]
C. Jiang, Z. Ding, J. Yu, S. Zhang, C. Yan, Y. Zhang, et al. Cabin computing. Sci Sin Inform, 51 (8) (2021), pp. 1233-1254
[206]
F.H. Robertson, F. Bourriez, M. He, D. Soper, C. Baker, H. Hemida, et al. An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon. J Wind Eng Ind Aerodyn, 193 (2019), Article 103966
AI Summary AI Mindmap
PDF(4154 KB)

Accesses

Citations

Detail

Sections
Recommended

/