Utilization of Bubbles and Oil for Microplastic Capture from Water

Joshua Saczek, Xiaoxue Yao, Vladimir Zivkovic, Mohamed Mamlouk, Steven Wang, Stevin S. Pramana

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 71-83.

PDF(2300 KB)
PDF(2300 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 71-83. DOI: 10.1016/j.eng.2023.01.021
Research
Article

Utilization of Bubbles and Oil for Microplastic Capture from Water

Author information +
History +

Abstract

The removal of microplastics (MPs) from water using oil has shown early promise; however, incorporation of this technique into a feasible in situ method has yet to be developed. Here, a simple yet effective method of MP capture from water using vegetable oil with bubbles is demonstrated to achieve high removal efficiencies of > 98%. Comparisons are made with other methods of agitation, and higher removal efficiencies are observed when bubbles are used. Due to the low agitation provided by the bubbles, the oil layer remains unbroken, meaning that no oil is released into the bulk water phase. In this way, secondary contamination is avoided—unlike membrane filtration, another effective removal method, in which polymer-based membranes can break down due to chemical backwashing and ageing. It is demonstrated that variation in MP size within the micrometer range (50-170 μm) has minor impact on the removal efficiency; however, 100% removal is achieved for larger, millimeter-sized MPs (500-5000 μm). Similarly, a high removal efficiency of greater than 99% is achieved in the capture of microfibers. Other factors such as oil volume and water salinity are also investigated and discussed. Based on these results, the proposed method can be introduced into multiple setting types as a passive and continuous method of MP capture.

Graphical abstract

Keywords

Microplastic / Floatation / Density separation / Wetting

Cite this article

Download citation ▾
Joshua Saczek, Xiaoxue Yao, Vladimir Zivkovic, Mohamed Mamlouk, Steven Wang, Stevin S. Pramana. Utilization of Bubbles and Oil for Microplastic Capture from Water. Engineering, 2024, 41(10): 71‒83 https://doi.org/10.1016/j.eng.2023.01.021

References

[1]
J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, et al. Plastic waste inputs from land into the ocean. Science, 347 (6223) (2015), pp. 768-771.
[2]
Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. Sources, fate and effects of microplastics in the marine environment: a global assessment. Kershaw P, editor. London: International Maritime Organization; 2015.
[3]
X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, et al. Microplastics contaminate the deepest part of the world’s ocean. Geochem Persp Let, 9 (2018), pp. 1-5.
[4]
S. Chiba, H. Saito, R. Fletcher, T. Yogi, M. Kayo, S. Miyagi, et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar Policy, 96 (2018), pp. 204-212.
[5]
L.H. Jensen, C.A. Motti, A.L. Garm, H. Tonin, F.J. Kroon.Sources, distribution and fate of microfibres on the Great Barrier Reef, Australia. Sci Rep, 9 (1) (2019), p. 9021.
[6]
K. Novotna, L. Cermakova, L. Pivokonska, T. Cajthaml, M. Pivokonsky. Microplastics in drinking water treatment—current knowledge and research needs. Sci Total Environ, 667 (2019), pp. 730-740.
[7]
S.A. Mason, V.G. Welch, J. Neratko.Synthetic polymer contamination in bottled water. Front Chem, 6 (2018), p. 407.
[8]
J.P. da Costa, P.S.M. Santos, A.C. Duarte, T. Rocha-Santos. (Nano)plastics in the environment—sources, fates and effects. Sci Total Environ, 566-567 (2016), pp. 15-26.
[9]
J. Gigault, A. ter Halle, M. Baudrimont, P.Y. Pascal, F. Gauffre, T.L. Phi, et al. Current opinion: what is a nanoplastic?. Environ Pollut, 235 (2018), pp. 1030-1034.
[10]
Nanoplastic should be better understood. Nat Nanotechnol 2019; 14(4):299.
[11]
S. Wagner, T. Reemtsma. Things we know and don’t know about nanoplastic in the environment. Nat Nanotechnol, 14 (4) (2019), pp. 300-301.
[12]
A. Ter Halle, L. Jeanneau, M. Martignac, E. Jardé, B. Pedrono, L. Brach, et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol, 51 (23) (2017), pp. 13689-13697.
[13]
R. Lehner, C. Weder, A. Petri-Fink, B. Rothen-Rutishauser. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol, 53 (4) (2019), pp. 1748-1765.
[14]
M. Prüst, J. Meijer, R.H.S. Westerink.The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol, 17 (1) (2020), p. 24.
[15]
A. Ragusa, A. Svelato, C. Santacroce, P. Catalano, V. Notarstefano, O. Carnevali, et al. Plasticenta: first evidence of microplastics in human placenta. Environ Int, 146 (2021), p. 106274.
[16]
B. Nguyen, D. Claveau-Mallet, L.M. Hernandez, E.G. Xu, J.M. Farner, N. Tufenkji. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc Chem Res, 52 (4) (2019), pp. 858-866.
[17]
V.C. Shruti, F. Pérez-Guevara, I. Elizalde-Martínez, G. Kutralam-Muniasamy.First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—future research and environmental considerations. Sci Total Environ, 726 (2020), p. 138580.
[18]
G. Liebezeit, E. Liebezeit. Non-pollen particulates in honey and sugar. Food Addit Contam A, 30 (12) (2013), pp. 2136-2140.
[19]
G. Liebezeit, E. Liebezeit. Synthetic particles as contaminants in German beers. Food Addit Contam A, 31 (9) (2014), pp. 1574-1578.
[20]
M. Kosuth, S.A. Mason, E.V. Wattenberg. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One, 13 (4) (2018), p. e0194970.
[21]
R. Triebskorn, T. Braunbeck, T. Grummt, L. Hanslik, S. Huppertsberg, M. Jekel, et al. Relevance of nano- and microplastics for freshwater ecosystems: a critical review. TrAC Trends Analyt Chem, 110 (2019), pp. 375-392.
[22]
H.C. Lu, S. Ziajahromi, P.A. Neale, F.D.L. Leusch.A systematic review of freshwater microplastics in water and sediments: recommendations for harmonisation to enhance future study comparisons. Sci Total Environ, 781 (2021), p. 146693.
[23]
T. Poerio, E. Piacentini, R. Mazzei. Membrane processes for microplastic removal. Molecules, 24 (22) (2019), p. 4148.
[24]
B. Ma, W. Xue, C. Hu, H. Liu, J. Qu, L. Li. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J, 359 (2019), pp. 159-167.
[25]
B. Ma, W. Xue, Y. Ding, C. Hu, H. Liu, J. Qu. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J Environ Sci, 78 (2019), pp. 267-275.
[26]
J. Sun, X. Dai, Q. Wang, M.C.M. van Loosdrecht, B.J. Ni. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res, 152 (2019), pp. 21-37.
[27]
J. Talvitie, A. Mikola, A. Koistinen, O. Setälä. Solutions to microplastic pollution—removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res, 123 (2017), pp. 401-407.
[28]
W. Liu, J. Zhang, H. Liu, X. Guo, X. Zhang, X. Yao, et al. A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms. Environ Int, 146 (2021), p. 106277.
[29]
F. Barbosa, J.A. Adeyemi, M.Z. Bocato, A. Comas, A. Campiglia.A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: from the detection to the toxicological assessment. Environ Res, 182 (2020), p. 109089.
[30]
A.R.P. Pizzichetti, C. Pablos, C. Álvarez-Fernández, K. Reynolds, S. Stanley, J. Marugán.Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Stud Chem Environ Eng, 3 (2021), p. 100075.
[31]
J. Bayo, J. López-Castellanos, S. Olmos.Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar Pollut Bull, 156 (2020), p. 111211.
[32]
M. Golgoli, M. Khiadani, A. Shafieian, T.K. Sen, Y. Hartanto, M.L. Johns, et al. Microplastics fouling and interaction with polymeric membranes: a review. Chemosphere, 283 (2021), p. 131185.
[33]
Y. Wang, Y. Li, L. Tian, L. Ju, Y. Liu. The removal efficiency and mechanism of microplastic enhancement by positive modification dissolved air flotation. Water Environ Res, 93 (5) (2021), pp. 693-702.
[34]
M.R. Karimi Estahbanati, M. Kiendrebeogo, A. Khosravanipour Mostafazadeh, P. Drogui, R.D. Tyagi.Treatment processes for microplastics and nanoplastics in waters: state-of-the-art review. Mar Pollut Bull, 168 (2021), p. 112374.
[35]
H. Shen, E. Forssberg, R.J. Pugh. Selective flotation separation of plastics by particle control. Resour Conserv Recycling, 33 (1) (2001), pp. 37-50.
[36]
H. Wang, X. Chen, Y. Bai, C. Guo, L. Zhang.Application of dissolved air flotation on separation of waste plastics ABS and PS. Waste Manage, 32 (7) (2012), pp. 1297-1305.
[37]
F. Pita, A. Castilho. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manage, 60 (2017), pp. 91-99.
[38]
F. Pita, A. Castilho. Plastics floatability: effect of saponin and sodium lignosulfonate as wetting agents. Polímeros, 29 (3) (2019), p. e2019035.
[39]
T. Mani, S. Frehland, A. Kalberer, P. Burkhardt-Holm. Using castor oil to separate microplastics from four different environmental matrices. Anal Methods, 11 (13) (2019), pp. 1788-1794.
[40]
E.M. Crichton, M. Noël, E.A. Gies, P.S. Ross. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal Methods, 9 (9) (2017), pp. 1419-1428.
[41]
G.Z. Dodson, A.K. Shotorban, P.G. Hatcher, D.C. Waggoner, S. Ghosal, N. Noffke.Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar Pollut Bull, 151 (2020), p. 110869.
[42]
C. Scopetani, D. Chelazzi, J. Mikola, V. Leiniö, R. Heikkinen, A. Cincinelli, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci Total Environ, 733 (2020), p. 139338.
[43]
D. Tao. Role of bubble size in flotation of coarse and fine particles—a review. Sep Sci Technol, 39 (4) (2005), pp. 741-760.
[44]
B. Shahbazi, B. Rezai, S.M. Javad Koleini. Bubble-particle collision and attachment probability on fine particles flotation. Chem Eng Process, 49 (6) (2010), pp. 622-627.
[45]
A. Nguyen-Van. The collision between fine particles and single air bubbles in flotation. J Colloid Interface Sci, 162 (1) (1994), pp. 123-128.
[46]
N.R. Geraldi, L.E. Dodd, B.B. Xu, D. Wood, G.G. Wells, G. McHale, et al. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities. Bioinspir Biomim, 13 (2) (2018), p. 024001.
[47]
N.R. Geraldi, L.E. Dodd, B.B. Xu, G.G. Wells, D. Wood, M.I. Newton, et al. Drag reduction properties of superhydrophobic mesh pipes. Surf Topogr, 5 (3) (2017), p. 034001.
[48]
G. Bordós, B. Urbányi, A. Micsinai, B. Kriszt, Z. Palotai, I. Szabó, et al. Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Chemosphere, 216 (2019), pp. 110-116.
[49]
A.B. Silva, A.S. Bastos, C.I.L. Justino, J.P. da Costa, A.C. Duarte, T.A.P. Rocha-Santos. Microplastics in the environment: challenges in analytical chemistry—a review. Anal Chim Acta, 1017 (2018), pp. 1-19.
[50]
A. Karami, A. Golieskardi, Y.B. Ho, V. Larat, B. Salamatinia.Microplastics in eviscerated flesh and excised organs of dried fish. Sci Rep, 7 (1) (2017), p. 5473.
[51]
A.L. Andrady. Microplastics in the marine environment. Mar Pollut Bull, 62 (8) (2011), pp. 1596-1605.
[52]
E.G. Karakolis, B. Nguyen, J.B. You, C.M. Rochman, D. Sinton. Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environ Sci Technol Lett, 6 (6) (2019), pp. 334-340.
[53]
A.T. Slark, P.M. Hadgett. The effect of specific interactions on dye transport in polymers above the glass transition. Polymer, 40 (14) (1999), pp. 4001-4011.
[54]
Z. Sobhani, X. Zhang, C. Gibson, R. Naidu, M. Megharaj, C. Fang.Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Res, 174 (2020), p. 115658.
[55]
C.A. Schneider, W.S. Rasband, K.W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 9 (7) (2012), pp. 671-675.
[56]
A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen. Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett, 58 (10) (1987), pp. 1038-1040.
[57]
F. Rietz, R. Stannarius.On the brink of jamming: granular convection in densely filled containers. Phys Rev Lett, 100 (7) (2008), p. 078002.
[58]
J.B. Knight, H.M. Jaeger, S.R. Nagel. Vibration-induced size separation in granular media: the convection connection. Phys Rev Lett, 70 (24) (1993), pp. 3728-3731.
[59]
K. Lin, R. Chen, L. Zhang, W. Shen, D. Zang. Enhancing water evaporation by interfacial silica nanoparticles. Adv Mater Interfaces, 6 (16) (2019), p. 1900369.
[60]
P. Singha, S. Swaminathan, A.S. Yadav, S.N. Varanakkottu. Surfactant-mediated collapse of liquid marbles and directed assembly of particles at the liquid surface. Langmuir, 35 (13) (2019), pp. 4566-4576.
[61]
G. Alp, E. Alp, N. Aydogan.Magnetic liquid marbles to facilitate rapid manipulation of the oil phase: synergistic effect of semifluorinated ligand and catanionic surfactant mixtures. Colloids Surf A, 585 (2020), p. 124051.
[62]
A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann. A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A, 286 (1-3) (2006), pp. 92-103.
[63]
M. Enfrin, J. Lee, Y. Gibert, F. Basheer, L. Kong, L.F. Dumée.Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J Hazard Mater, 384 (2020), p. 121393.
[64]
L. He, S. Zhang, B. Tang, L. Wang, J. Yang. Dyeability of polylactide fabric with hydrophobic anthraquinone dyes. Chin J Chem Eng, 17 (1) (2009), pp. 156-159.
[65]
L. He, S.F. Zhang, B.T. Tang, L.L. Wang, J.Z. Yang. Dyes with high affinity for polylactide. Chin Chem Lett, 18 (9) (2007), pp. 1151-1153.
[66]
G. Wypych.Handbook of polymers. (2nd ed.), ChemTec Publishing, Toronto (2016).
[67]
E. Bormashenko, R. Pogreb, A. Musin, R. Balter, G. Whyman, D. Aurbach. Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technol, 203 (3) (2010), pp. 529-533.
[68]
A.B.D. Cassie, S. Baxter. Wettability of porous surfaces. Trans Faraday Soc, 40 (1944), pp. 546-551.
[69]
Kutz M, editor.Applied plastics engineering handbook: processing, materials, and applications. 2nd ed. Kidlington: William Andrew; 2016.
[70]
Osswald TA, Baur E, Brinkmann S, Oberbach K, Schmachtenberg E. International plastics handbook: the resource for plastics engineers. Cincinnati: Hanser Gardner Publications, Inc.; 2006.
[71]
L. Amaya-Bower, T. Lee. Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method. Comput Fluids, 39 (7) (2010), pp. 1191-1207.
[72]
R. Clift, J.R. Grace, M.E. Weber. Bubbles, drops, and particles. Dover Publications, Mineola (2013).
[73]
I.O. Kurtoglu, C.L. Lin. Lattice Boltzmann study of bubble dynamics. Numer Heat Transf B, 50 (4) (2006), pp. 333-351.
[74]
J.S. Hadamard. Mouvement permanent lent d’une sphere liquid et visqueuse dans un liquide visqueux. Compt Rend Acad Sci, 152 (1911), pp. 1735-1738 French.
[75]
W. Rybczynski. On the translatory motion of a fluid sphere in a viscous medium. Bull Acad Sci Cracow Series A, 40 (1911), pp. 33-78.
[76]
R. Clift, J.R. Grace, M.E. Weber. Bubbles, drops, and particles. Courier Corporation, North Chelmsford (2005).
[77]
S.D. GraphPad Prism. Version 9.1.2 [software]. 2022 Oct 10 [cited 2022 Dec 14]. Available from
[78]
S. Hamzah, L.Y. Ying, A.A.A.R. Azmi, N.A. Razali, N.H.H. Hairom, N.A. Mohamad, et al. Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater. J Environ Chem Eng, 9 (5) (2021), p. 105894.
[79]
M. Eriksen, S. Mason, S. Wilson, C. Box, A. Zellers, W. Edwards, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull, 77 (1-2) (2013), pp. 177-182.
[80]
S. Klein, E. Worch, T.P. Knepper. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol, 49 (10) (2015), pp. 6070-6076.
[81]
E.K. Fischer, L. Paglialonga, E. Czech, M. Tamminga. Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut, 213 (2016), pp. 648-657.
[82]
H.K. Imhof, N.P. Ivleva, J. Schmid, R. Niessner, C. Laforsch. Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol, 23 (19) (2013), pp. R867-R868.
[83]
Y. Chae, Y.J. An. Effects of micro- and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull, 124 (2) (2017), pp. 624-632.
[84]
M.C. Goldstein, A.J. Titmus, M. Ford. Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean. PLoS One, 8 (11) (2013), p. e80020.
[85]
L. Van Cauwenberghe, A. Vanreusel, J. Mees, C.R. Janssen. Microplastic pollution in deep-sea sediments. Environ Pollut, 182 (2013), pp. 495-499.
[86]
H.A. Nel, P.W. Froneman. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar Pollut Bull, 101 (1) (2015), pp. 274-279.
[87]
A.S. Tagg, M. Sapp, J.P. Harrison, C.J. Sinclair, E. Bradley, Y. Ju-Nam, et al. Microplastic monitoring at different stages in a wastewater treatment plant using reflectance micro-FTIR imaging. Front Environ Sci, 8 (2020), p. 145.
[88]
M.R. Michielssen, E.R. Michielssen, J. Ni, M.B. Duhaime. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ Sci Water Res Technol, 2 (6) (2016), pp. 1064-1073.
[89]
M. Lares, M.C. Ncibi, M. Sillanpää, M. Sillanpää. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environ Sci Pollut R, 26 (12) (2019), pp. 12109-12122.
[90]
E.A. Gies, J.L. LeNoble, M. Noël, A. Etemadifar, F. Bishay, E.R. Hall, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver. Canada. Mar Pollut Bull, 133 (2018), pp. 553-561.
[91]
S.A. Mason, D. Garneau, R. Sutton, Y. Chu, K. Ehmann, J. Barnes, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut, 218 (2016), pp. 1045-1054.
[92]
B.E. Oßmann, G. Sarau, H. Holtmannspötter, M. Pischetsrieder, S.H. Christiansen, W. Dicke. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res, 141 (2018), pp. 307-316.
[93]
D. Schymanski, C. Goldbeck, H.U. Humpf, P. Fürst. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res, 129 (2018), pp. 154-162.
[94]
N.P. Fofonoff. Physical properties of seawater: a new salinity scale and equation of state for seawater. J Geophys Res, 90 (C2) (1985), pp. 3332-3342.
[95]
J. Crease. Determination of the density of seawater. Nature, 233 (5318) (1971), p. 329.
[96]
K. Kremling. New method for measuring density of seawater. Nature, 229 (5280) (1971), pp. 109-110.
[97]
T. Miettinen, J. Ralston, D. Fornasiero. The limits of fine particle flotation. Miner Eng, 23 (5) (2010), pp. 420-437.
[98]
G. Johansson, R.J. Pugh. The influence of particle size and hydrophobicity on the stability of mineralized froths. Int J Miner Process, 34 (1-2) (1992), pp. 1-21.
[99]
P.M. Ireland, C.A. Thomas, B.T. Lobel, G.B. Webber, S. Fujii, E.J. Wanless.An electrostatic method for manufacturing liquid marbles and particle-stabilized aggregates. Front Chem, 6 (2018), p. 280.
[100]
G. Wang, L. Ge, S. Mitra, G.M. Evans, J.B. Joshi, S. Chen. A review of CFD modelling studies on the flotation process. Miner Eng, 127 (2018), pp. 153-177.
[101]
R. Maxwell, S. Ata, E.J. Wanless, R. Moreno-Atanasio. Computer simulations of particle-bubble interactions and particle sliding using discrete element method. J Colloid Interface Sci, 381 (1) (2012), pp. 1-10.
[102]
Z. Brabcová, T. Karapantsios, M. Kostoglou, P. Basařová, K. Matis. Bubble-particle collision interaction in flotation systems. Colloids Surf A, 473 (2015), pp. 95-103.
[103]
P. Basařová, J. Zawala, M. Zedníková. Interactions between a small bubble and a greater solid particle during the flotation process. Min Proc Ext Met Rev, 40 (6) (2019), pp. 410-426.
[104]
B.K. Gorain, J.P. Franzidis, E.V. Manlapig. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell—part 1: effect on bubble size distribution. Miner Eng, 8 (6) (1995), pp. 615-635.
[105]
R.H. Yoon. The role of hydrodynamic and surface forces in bubble-particle interaction. Int J Miner Process, 58 (1-4) (2000), pp. 129-143.
[106]
J. Sokolovic, S. Miskovic. The effect of particle size on coal flotation kinetics: a review. Physicochem Probl Miner Process, 54 (4) (2018), pp. 1172-1190.
[107]
W.J. Trahar. A rational interpretation of the role of particle size in flotation. Int J Miner Process, 8 (4) (1981), pp. 289-327.
[108]
R.C.M. Van Der Spuy, V.E. Ross. The recovery of coarse minerals by agglomeration and flotation. Miner Eng, 4 (7-11) (1991), pp. 1153-1166.
[109]
H. El-Shall, N.A. Abdel-Khalek, S. El-Mofty. Role of frothers in column flotation of coarse phosphates. Min Metall Explor, 20 (4) (2003), pp. 199-205.
[110]
S. Goel, G.J. Jameson. Detachment of particles from bubbles in an agitated vessel. Miner Eng, 36-38 (2012), pp. 324-330.
[111]
J. Ralston, S.S. Dukhin, N.A. Mishchuk. Inertial hydrodynamic particle-bubble interaction in flotation. Int J Miner Process, 56 (1-4) (1999), pp. 207-256.
[112]
N. Ahmed, G.J. Jameson. The effect of bubble size on the rate of flotation of fine particles. Int J Miner Process, 14 (3) (1985), pp. 195-215.
[113]
Z. Dai, D. Fornasiero, J. Ralston. Particle-bubble attachment in mineral flotation. J Colloid Interface Sci, 217 (1) (1999), pp. 70-76.
[114]
K.L. Sutherland. Physical chemistry of flotation. XI. Kinetics of the flotation process. J Phys Chem, 52 (2) (1948), pp. 394-425.
[115]
G.S. Dobby, J.A. Finch. A model of particle sliding time for flotation size bubbles. J Colloid Interface Sci, 109 (2) (1986), pp. 493-498.
[116]
Y. Ye, J.D. Miller. Bubble/particle contact time in the analysis of coal flotation. Coal Prep, 5 (3-4) (1988), pp. 147-166.
[117]
A.V. Nguyen, J. Ralston, H.J. Schulze. On modelling of bubble-particle attachment probability in flotation. Int J Miner Process, 53 (4) (1998), pp. 225-249.
[118]
D. Hewitt, D. Fornasiero, J. Ralston. Bubble-particle attachment. J Chem Soc Faraday Trans, 91 (13) (1995), pp. 1997-2001.
[119]
R.N. Lamb, D.N. Furlong. Controlled wettability of quartz surfaces. J Chem Soc Faraday Trans 1, 78 (1) (1982), pp. 61-73.
[120]
Y. Deng, L. Xu, H. Lu, H. Wang, Y. Shi. Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chem Eng Sci, 177 (2018), pp. 445-454.
[121]
S. Gao, L. Ma, D. Wei, Y. Shen. Wettability of quartz particles at varying conditions on the basis of the measurement of relative wetting contact angles and their flotation behaviour. Physicochem Probl Miner Process, 55 (1) (2019), pp. 278-289.
[122]
S. Yang, R. Pelton, M. Montgomery, Y. Cui. Nanoparticle flotation collectors III: the role of nanoparticle diameter. ACS Appl Mater Interfaces, 4 (9) (2012), pp. 4882-4890.
[123]
A.V. Nguyen, P. George, G.J. Jameson. Demonstration of a minimum in the recovery of nanoparticles by flotation: theory and experiment. Chem Eng Sci, 61 (8) (2006), pp. 2494-2509.
[124]
M. Sajjad, A. Otsuki. Correlation between flotation and rheology of fine particle suspensions. Metals, 12 (2) (2022), p. 270.
[125]
S.Y. Tan, C.P. Whitby, J. Ralston, D. Fornasiero. Brownian diffusion of ultrafine particles to an air-water interface. Adv Powder Technol, 20 (3) (2009), pp. 262-266.
[126]
T.T. Chau, W.J. Bruckard, P.T.L. Koh, A.V. Nguyen. A review of factors that affect contact angle and implications for flotation practice. Adv Colloid Interface Sci, 150 (2) (2009), pp. 106-115.
[127]
Livshits AK, Dudenkov SV. Some factors in flotation froth stability. In: ArbiterN, editor. Sep 20-24;Proceedings of the VIIth International Mineral Processing Congress; 1964 New York City, NY, USA. New York City: Gordon & Breach Science Publishers; 1965 p. 367-71.
[128]
A. Dippenaar. The destabilization of froth by solids. I. The mechanism of film rupture. Int J Miner Process, 9 (1) (1982), pp. 1-14.
[129]
V.E. Vigdergauz, G.Y. Golberg. Influence of the hydrophobicity of mineral particles on the energy of interaction with air bubbles during flotation. Part II.Monomineral flotation of quartz, coal, and pyrite. Chem Petrol Eng, 47 (9-10) (2012), pp. 580-586.
[130]
A.T. Tyowua, S.G. Yiase, B.P. Binks. Double oil-in-oil-in-oil emulsions stabilised solely by particles. J Colloid Interface Sci, 488 (2017), pp. 127-134.
[131]
P. Aussillous, D. Quéré. Liquid marbles. Nature, 411 (6840) (2001), pp. 924-927.
[132]
J. Saczek, X. Yao, V. Zivkovic, M. Mamlouk, D. Wang, S.S. Pramana, et al. Long-lived liquid marbles for green applications. Adv Funct Mater, 31 (35) (2021), p. 2011198.
[133]
K. Kido, P.M. Ireland, T. Sekido, E.J. Wanless, G.B. Webber, Y. Nakamura, et al. Formation of liquid marbles using pH-responsive particles: rolling vs electrostatic methods. Langmuir, 34 (17) (2018), pp. 4970-4979.
[134]
B.P. Binks. Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci, 7 (1-2) (2002), pp. 21-41.
[135]
K.R. Liyanaarachchi, P.M. Ireland, G.B. Webber, K.P. Galvin.Electrostatic formation of liquid marbles and agglomerates. Appl Phys Lett, 103 (5) (2013), p. 054105.
[136]
D.I. Verrelli, P.T.L. Koh, A.V. Nguyen. Particle-bubble interaction and attachment in flotation. Chem Eng Sci, 66 (23) (2011), pp. 5910-5921.
[137]
P. Krystynik, K. Strunakova, M. Syc, P. Kluson.Notes on common misconceptions in microplastics removal from water. Appl Sci, 11 (13) (2021), p. 5833.
[138]
C. Wang, H. Wang, J. Fu, Y. Liu. Flotation separation of waste plastics for recycling—a review. Waste Manage, 41 (2015), pp. 28-38.
[139]
Crawford CB, Quinn B. Microplastic separation techniques. In: Microplastic pollutants. Amsterdam: Elsevier; 2017. p. 203-18.
[140]
T.R. Gaborski, J.L. Snyder, C.C. Striemer, D.Z. Fang, M. Hoffman, P.M. Fauchet, et al. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano, 4 (11) (2010), pp. 6973-6981.
[141]
C. Schwaferts, R. Niessner, M. Elsner, N.P. Ivleva. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Analyt Chem, 112 (2019), pp. 52-65.
[142]
C. Akarsu, H. Kumbur, A.E. Kideys. Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol, 84 (7) (2021), pp. 1648-1662.
[143]
Y. Zhang, H. Jiang, K. Bian, H. Wang, C. Wang.A critical review of control and removal strategies for microplastics from aquatic environments. J Environ Chem Eng, 9 (4) (2021), p. 105463.
[144]
M. Malankowska, C. Echaide-Gorriz, J. Coronas. Microplastics in marine environment: a review on sources, classification, and potential remediation by membrane technology. Environ Sci Water Res Technol, 7 (2) (2021), pp. 243-258.
[145]
B.K. Pramanik, S.K. Pramanik, S. Monira. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere, 282 (2021), p. 131053.
[146]
H. Ding, J. Zhang, H. He, Y. Zhu, D.D. Dionysiou, Z. Liu, et al. Do membrane filtration systems in drinking water treatment plants release nano/microplastics?. Sci Total Environ, 755 (Pt 2) (2021), p. 142658.
[147]
X. Lv, Q. Dong, Z. Zuo, Y. Liu, X. Huang, W.M. Wu. Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies. J Clean Prod, 225 (2019), pp. 579-586.
[148]
M. Enfrin, J. Lee, P. Le-Clech, L.F. Dumée.Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. J Membr Sci, 601 (2020), p. 117890.
[149]
World Health Organization. Acrylamide in drinking-water: background document for development of WHO Guidelines for Drinking-Water Quality. Geneva: World Health Organization; 2003.
[150]
Y. Zhang, A. Diehl, A. Lewandowski, K. Gopalakrishnan, T. Baker.Removal efficiency of micro- and nanoplastics (180 nm-125 μm) during drinking water treatment. Sci Total Environ, 720 (2020), p. 137383.
[151]
F.C. Fernandes, K. Kirwan, D. Lehane, S.R. Coles.Epoxy resin blends and composites from waste vegetable oil. Eur Polym J, 89 (2017), pp. 449-460.
[152]
B. Wu, A. Sufi, R. Ghosh Biswas, A. Hisatsune, V. Moxley-Paquette, P. Ning, et al. Direct conversion of McDonald’s waste cooking oil into a biodegradable high-resolution 3D-printing resin. ACS Sustain Chem Eng, 8 (2) (2020), pp. 1171-1177.
[153]
Y. Cui, J. Yang, D. Lei, J. Su.3D printing of a dual-curing resin with cationic curable vegetable oil. Ind Eng Chem Res, 59 (25) (2020), pp. 11381-11388.
AI Summary AI Mindmap
PDF(2300 KB)

Accesses

Citations

Detail

Sections
Recommended

/