Key Considerations on the Industrial Application of Lignocellulosic Biomass Pyrolysis Toward Carbon Neutrality

Shu Zhang, Kan Zou, Bin Li, Hojae Shim, Yong Huang

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 35-38.

PDF(605 KB)
PDF(605 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 35-38. DOI: 10.1016/j.eng.2023.02.015
Views & Comments

Key Considerations on the Industrial Application of Lignocellulosic Biomass Pyrolysis Toward Carbon Neutrality

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Shu Zhang, Kan Zou, Bin Li, Hojae Shim, Yong Huang. Key Considerations on the Industrial Application of Lignocellulosic Biomass Pyrolysis Toward Carbon Neutrality. Engineering, 2023, 29(10): 35‒38 https://doi.org/10.1016/j.eng.2023.02.015

References

[1]
H.L. Van Soest, M.G.J. den Elzen, D.P. van Vuuren. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat Commun, 12 (1) ( 2021), p. 2140
[2]
A. Devi, S. Bajar, H. Kour, R. Kothari, D. Pant, A. Singh. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. BioEnergy Res, 15 (4) ( 2022), pp. 1820-1841. DOI: 10.1007/s12155-022-10401-9
[3]
T. Zhang. Taking on all of the biomass for conversion. Science, 367 (6484) ( 2020), pp. 1305-1306. DOI: 10.1126/science.abb1463
[4]
Q. Tu, A. Parvatker, M. Garedew, C. Harris, M. Eckelman, J.B. Zimmerman, et al.. Electrocatalysis for chemical and fuel production: investigating climate change mitigation potential and economic feasibility. Environ Sci Technol, 55 (5) ( 2021), pp. 3240-3249. DOI: 10.1021/acs.est.0c07309
[5]
L. Shuai, M.T. Amiri, Y.M. Questell-Santiago, F. Héroguel, Y. Li, H. Kim, et al.. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 354 (6310) ( 2016), pp. 329-333. DOI: 10.1126/science.aaf7810
[6]
J.S. Luterbacher, J.M. Rand, D.M. Alonso, J. Han, J.T. Youngquist, C.T. Maravelias, et al.. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science, 343 (6168) ( 2014), pp. 277-280. DOI: 10.1126/science.1246748
[7]
E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A. Dumesic. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322 (5900) ( 2008), pp. 417-421. DOI: 10.1126/science.1159210
[8]
Z. Sun, G. Bottari, A. Afanasenko, M.C.A. Stuart, P.J. Deuss, B. Fridrich, et al.. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal, 1 (1) ( 2018), pp. 82-92
[9]
T. Bridgwater. Thermochemical and biochemical biomass conversion activities. Biomass Bioenergy, 2 (1-6) ( 1992), pp. 307-318
[10]
D. Lee, H. Nam, M.W. Seo, S.H. Lee, D. Tokmurzin, S. Wang, et al.. Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem Eng J, 447 ( 2022), Article 137501
[11]
F. Jiang, D. Cao, Y. Zhang, S. Hu, X. Huang, Y. Ding, et al.. Combustion of the banana pseudo-stem hydrochar by the high-pressure CO2-hydrothermolysis: thermal conversion, kinetic, and emission analyses. Fuel, 331 ( 2023), Article 125798
[12]
S. Wang, G. Dai, H. Yang, Z. Luo. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Pror Energy Combust Sci, 62 ( 2017), pp. 33-86
[13]
M.S. Mettler, A.D. Paulsen, D.G. Vlachos, P.J. Dauenhauer. The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem, 14 (5) ( 2012), pp. 1284-1288. DOI: 10.1039/c2gc35184f
[14]
X. Zhou, W. Li, R. Mabon, L.J. Broadbelt. A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci, 11 (5) ( 2018), pp. 1240-1260. DOI: 10.1039/c7ee03208k
[15]
S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, et al.. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv, 27 (5) ( 2009), pp. 562-567
[16]
S. Wu, D. Shen, J. Hu, H. Zhang, R. Xiao. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy, 90 ( 2016), pp. 209-217
[17]
D.M. Keown, G. Favas, J. Hayashi, C.Z. Li. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Bioresour Technol, 96 (14) ( 2005), pp. 1570-1577
[18]
A. Devi, A. Singh, S. Bajar, D. Pant, Z.U. Din. Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng, 9 (5) ( 2021), Article 105798
[19]
Y. Huang, Y. Hu, J.I. Hayashi, Y. Fang. Interactions between volatiles and char during pyrolysis of biomass: reactive species determining and reaction over functionalized carbon nanotubes. Energy Fuels, 30 (7) ( 2016), pp. 5758-5765. DOI: 10.1021/acs.energyfuels.6b00725
[20]
S. Liu, Y. Wu, J. Zhang, W. Gao, J. Zhou, Y. Huang, et al.. Volatile-char interactions during biomass pyrolysis: a case study of a lignin model compound and functionalized graphitized carbon nanotubes. Energy Fuels, 33 (11) ( 2019), pp. 11339-11345. DOI: 10.1021/acs.energyfuels.9b03247
[21]
Y. Huang, S. Kudo, O. Masek, K. Norinaga, J.I. Hayashi. Simultaneous maximization of the char yield and volatility of oil from biomass pyrolysis. Energy Fuels, 27 (1) ( 2013), pp. 247-254. DOI: 10.1021/ef301366x
[22]
Y. Huang, S. Kudo, K. Norinaga, M. Amaike, J.I. Hayashi. Selective production of light oil by biomass pyrolysis with feedstock-mediated recycling of heavy oil. Energy Fuels, 26 (1) ( 2012), pp. 256-264. DOI: 10.1021/ef2011673
[23]
Y. Huang, Y. Gao, H. Zhou, H. Sun, J. Zhou, S. Zhang. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour Technol, 272 ( 2019), pp. 77-82
[24]
W. Wang, R. Lemaire, A. Bensakhria, D. Luart. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J Anal Appl Pyrolysis, 163 ( 2022), Article 105479
[25]
S. Zhang, Y. Song, Y.C. Song, Q. Yi, L. Dong, T.T. Li, et al.. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: effects of inorganic species in char on the reforming of tars from wood and agricultural wastes. Fuel, 183 ( 2016), pp. 177-184
[26]
N. Jendoubi, F. Broust, J.M. Commandre, G. Mauviel, M. Sardin, J. Lédé. Inorganics distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols. J Anal Appl Pyrolysis, 92 (1) ( 2011), pp. 59-67
[27]
M.S. Mettler, D.G. Vlachos, P.J. Dauenhauer. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci, 5 (7) ( 2012), pp. 7797-7809. DOI: 10.1039/c2ee21679e
[28]
W. Deng, X. Wang, C.H. Lam, Z. Xiong, H. Han, J. Xu, et al.. Evolution of coke structures during electrochemical upgrading of bio-oil. Fuel Process Technol, 225 ( 2022), Article 107036
[29]
W. Deng, X. Wang, S.S.A. Syed-Hassan, C.H. Lam, X. Hu, Z. Xiong, et al.. Polymerization during low-temperature electrochemical upgrading of bio-oil: effects of interactions among bio-oil fractions. Energy, 251 ( 2022), Article 123944
[30]
G. Xiao, Z. Xiong, S.S.A. Syed-Hassan, L. Ma, J. Xu, L. Jiang, et al.. Coke formation during the pyrolysis of bio-oil: further understanding on the evolution of radicals. Appl Energy Combust Sci, 9 ( 2022), Article 100050
[31]
Z. Xiong, S.S.A. Syed-Hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, et al.. Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: characterization of coke structure and elucidation of coke formation mechanism. Appl Energy, 239 ( 2019), pp. 981-990
[32]
B. Li, X. Xie, L. Zhang, D. Lin, S. Wang, S. Wang, et al.. Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose. Fuel, 306 ( 2021), Article 121658
[33]
H. Zeghioud, L. Fryda, H. Djelal, A. Assadi, A. Kane. A comprehensive review of biochar in removal of organic pollutants from wastewater: characterization, toxicity, activation/functionalization and influencing treatment factors. J Water Process Eng, 47 ( 2022), Article 102801
[34]
K. Abhishek, A. Shrivastava, V. Vimal, A.K. Gupta, S.K. Bhujbal, J.K. Biswas, et al.. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: a state-of-the-art review. Sci Total Environ, 853 ( 2022), Article 158562
[35]
F. Jiang, D. Cao, S. Hu, Y. Wang, Y. Zhang, X. Huang, et al.. High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon. Bioresour Technol, 354 ( 2022), Article 127137
[36]
Y. Huang, B. Li, D. Liu, X. Xie, H. Zhang, H. Sun, et al.. Fundamental advances in biomass autothermal/oxidative pyrolysis: a review. ACS Sustain Chem Eng, 8 (32) ( 2020), pp. 11888-11905. DOI: 10.1021/acssuschemeng.0c04196
[37]
B. Li, J. Tang, X. Xie, J. Wei, D. Xu, L. Shi, et al.. Char structure evolution during molten salt pyrolysis of biomass: effect of temperature. Fuel, 331 ( 2023), Article 125747

The authors appreciate the financial support from Fundamental Research on Integrated Technology of Biomass Directed Thermal Conversion and Functional Carbon Material Preparation of Ministry of Science and Technology of the People's Republic of China (2018YFE0183600) and National Natural Science Foundation of China (52276196 and 52276200).

Funding
Fundamental Research on Integrated Technology of Biomass Directed Thermal Conversion and Functional Carbon Material Preparation of Ministry of Science and Technology of the People's Republic of China(2018YFE0183600); National Natural Science Foundation of China(52276196); National Natural Science Foundation of China(52276200)
AI Summary AI Mindmap
PDF(605 KB)

Accesses

Citations

Detail

Sections
Recommended

/