Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System (CCMVS-R)

Lifeng Guo, Xiaoye Zhang, Junting Zhong, Deying Wang, Changhong Miao, Licheng Zhao, Zijiang Zhou, Jie Liao, Bo Hu, Lingyun Zhu, Yan Chen

Engineering ›› 2024, Vol. 33 ›› Issue (2) : 263-275.

PDF(3622 KB)
PDF(3622 KB)
Engineering ›› 2024, Vol. 33 ›› Issue (2) : 263-275. DOI: 10.1016/j.eng.2023.02.017
Research
Article

Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System (CCMVS-R)

Author information +
History +

Abstract

CO2 is one of the most important greenhouse gases (GHGs) in the earth’s atmosphere. Since the industrial era, anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere, resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events. In 2020, China committed to striving for carbon neutrality by 2060. This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely, comprehensive, and objective monitoring and verification support (MVS) systems. The MVS approach relies on the top-down assimilation and inversion of atmospheric CO2 concentrations, as recommended by the Intergovernmental Panel on Climate Change (IPCC) Inventory Guidelines in 2019. However, the regional high-resolution assimilation and inversion method is still in its initial stage of development. Here, we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition (POD) with four-dimensional variational (4DVar) data assimilation based on the weather research and forecasting-greenhouse gas (WRF-GHG) model. Our China Carbon Monitoring and Verification Support at the Regional level (CCMVS-R) system can continuously assimilate information on atmospheric CO2 and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange. Atmospheric CO2 data were collected from six ground-based monitoring sites in Shanxi Province, China to verify the inversion effect of regional anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method (at 27 and 9 km). The uncertainty of the simulated atmospheric CO2 decreased significantly, with a root-mean-square error of CO2 concentration values between the ideal value and the simulated after assimilation was close to 0. The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6% (17%-38%) higher than the mean of five emission inventories using the bottom-up method, showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.

Graphical abstract

Keywords

CCMVS-R / Regional carbon assimilation system / Anthropogenic carbon emissions / CO2 / POD 4DVar

Cite this article

Download citation ▾
Lifeng Guo, Xiaoye Zhang, Junting Zhong, Deying Wang, Changhong Miao, Licheng Zhao, Zijiang Zhou, Jie Liao, Bo Hu, Lingyun Zhu, Yan Chen. Construction and Application of a Regional Kilometer-Scale Carbon Source and Sink Assimilation Inversion System (CCMVS-R). Engineering, 2024, 33(2): 263‒275 https://doi.org/10.1016/j.eng.2023.02.017

References

[1]
R. Pachauri, L. Meyer, G. Plattner, T. Stocker. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva (2014)
[2]
J.G. Canadell, P.M. Monteiro, M.H. Costa, L.C. Da Cunha, P.M. Cox, V. Alexey, et al.. Final government distribution—chapter 5:global carbon and other biogeochemical cycles and feedbacks Report. Intergovernmental Panel on Climate Change, Geneva (2021 Sep). Report No.: AR6 WGI
[3]
N. Chandra, P.K. Patra, Y. Niwa, A. Ito, Y. Iida, D. Goto, et al.. Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions. Atmos Chem Phys, 22 (14) (2022), pp. 9215-9243
[4]
J. Ma, L. Li, H. Wang, Y.i. Du, J. Ma, X. Zhang, et al.. Carbon capture and storage: history and the road ahead. Engineering, 14 (2022), pp. 33-43
[5]
C. Le Quéré, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, G.P. Peters, et al.. Global carbon budget 2016. Earth Syst Sci Data, 8 (2) (2016), pp. 605-649
[6]
T. Oda, S. Maksyutov, R.J. Andres. The Open-source Data Inventory for Anthropogenic Carbon dioxide (CO2)
[7]
M.W. Jones, R.M. Andrew, G.P. Peters, G. Janssens-Maenhout, A.J. De-Gol, P. Ciais, et al.. et al.. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959-2018. Sci Data, 8 (1) (2021), Article 2
[8]
The Central People’s Government of the People’s Republic of China. China’s achievements, new goals and new measures for nationally determined contributions. New York City: The United Nations Framework Convention on Climate Change; 2020. Chinese.
[9]
Z. Liu, T. Sun, Y. Yu, P. Ke, Z. Deng, C. Lu, et al.. Real-time carbon emission accounting technology toward carbon neutrality. Engineering, 14 (2022), pp. 44-51
[10]
Y.M. Wei, K. Chen, J.N. Kang, W. Chen, X.Y. Wang, X. Zhang. Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14 (2022), pp. 52-63
[11]
H.N. Zhang, R.R. Shen, X.P. Zhang, J.J. Kang, J.H. Yuan. Implications and pathways of China’s carbon neutrality: a review. Clim Chang Res, 18 (2) (2022), pp. 240-252. Chinese
[12]
M. Crippa, E. Solazzo, G. Huang, D. Guizzardi, E. Koffi, M. Muntean, et al.. High resolution temporal profiles in the emissions database for global atmospheric research. Sci Data, 7 (1) (2020), Article 121
[13]
J.S. Gregg, R.J. Andres, G. Marland. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett, 35 (8) (2008), Article L08806
[14]
Z. Liu, D. Guan, W. Wei, S.J. Davis, P. Ciais, J. Bai, et al.. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524 (7565) (2015), pp. 335-338
[15]
P. Rayner, M. Raupach, M. Paget, P. Peylin, E. Koffi. A new global gridded data set of CO2 emissions from fossil fuel combustion: methodology and evaluation. J Geophys Res D Atmospheres, 115 (2010), Article D19306
[16]
Y. Wang, J. Munger, S. Xu, M.B. McElroy, J. Hao, C. Nielsen, et al.. CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. Atmos Chem Phys, 10 (18) (2010), pp. 8881-8897
[17]
A. Kuze, H. Suto, M. Nakajima, T. Hamazaki. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt, 48 (35) (2009), pp. 6716-6733
[18]
Glumb R, Davis G, Lietzke C. The TANSO-FTS-2 instrument for the GOSAT-2 greenhouse gas monitoring mission. In: Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS 2014); Quebec City, QC, Canada. New York City: IEEE; 1238-40.
[19]
A. Eldering, C.W. O’Dell, P.O. Wennberg, D. Crisp, M.R. Gunson, C. Viatte, et al.. The Orbiting Carbon Observatory-2: first 18 months of science data products. Atmos Meas Tech, 10 (2) (2017), pp. 549-563
[20]
A. Eldering, P.O. Wennberg, D. Crisp, D.S. Schimel, M.R. Gunson, A. Chatterjee, et al.. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358 (2017), Article 6360
[21]
A. Eldering, T.E. Taylor, C.W. O’Dell, R. Pavlick. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmos Meas Tech, 12 (4) (2019), pp. 2341-2370
[22]
Y.i. Liu, J. Wang, L.u. Yao, X.i. Chen, Z. Cai, D. Yang, et al.. The TanSat mission: preliminary global observations. Sci Bull, 63 (18) (2018), pp. 1200-1207
[23]
D. Yang, Y.i. Liu, Z. Cai, X.i. Chen, L.u. Yao, D. Lu. First global carbon dioxide maps produced from TanSat measurements. Adv Atmos Sci, 35 (6) (2018), pp. 621-623
[24]
Q. Zhang, M. Li, C. Wei, A.P. Mizzi, Y. Huang, Q. Gu. Assimilation of OCO-2 retrievals with WRF-Chem/DART: a case study for the Midwestern United States. Atmos Environ, 246 (2021), Article 118106
[25]
F. Bréon, G. Broquet, V. Puygrenier, F. Chevallier, I. Xueref-Remy, M. Ramonet, et al.. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos Chem Phys, 15 (4) (2015), pp. 1707-1724
[26]
E.A. Kort, C. Frankenberg, C.E. Miller, T. Oda. Space-based observations of megacity carbon dioxide. Geophys Res Lett, 39 (2012), Article L17806
[27]
D. Pillai, M. Buchwitz, C. Gerbig, T. Koch, M. Reuter, H. Bovensmann, et al.. Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a case study for Berlin. Germany Atmos Chem Phys, 16 (15) (2016), pp. 9591-9610
[28]
O. Schneising, J. Heymann, M. Buchwitz, M. Reuter, H. Bovensmann, J. Burrows. Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends. Atmos Chem Phys, 13 (5) (2013), pp. 2445-2454
[29]
K. Wong, D. Fu, T. Pongetti, S. Newman, E. Kort, R. Duren, et al.. Mapping CH4: CO2 ratios in Los Angeles with CLARS-FTS from mount Wilson. California Atmos Chem Phys, 15 (1) (2015), pp. 241-252
[30]
X. Ye, T. Lauvaux, E.A. Kort, T. Oda, S. Feng, J.C. Lin, et al.. Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2. J Geophys Res Atmos, 125 (8) (2020), Article e2019JD030528
[31]
Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, L. Wei. 2019 refinement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, Geneva (2019)
[32]
G. Janssens-Maenhout, B. Pinty, M. Dowell, H. Zunker, E. Andersson, G. Balsamo, et al.. Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity. Bull Am Meteorol Soc, 101 (8) (2020), pp. E1439-E1451
[33]
M. Crippa, G. Oreggioni, D. Guizzardi, M. Muntean, E. Schaaf, E. Lo Vullo, et al.. Fossil CO2 and GHG emissions of all world countries. Publication Office of the European Union, Luxemburg (2019)
[34]
T. Oda, S. Maksyutov. A very high-resolution (1 km× 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos Chem Phys, 11 (2) (2011), pp. 543-556
[35]
J. Liu, D. Tong, Y. Zheng, J. Cheng, X. Qin, Q. Shi, et al.. Carbon and air pollutant emissions from China’s cement industry 1990-2015: trends, evolution of technologies, and drivers. Atmos Chem Phys, 21 (3) (2021), pp. 1627-1647
[36]
B. Cai, S. Liang, J. Zhou, J. Wang, L. Cao, S. Qu, et al.. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour Conserv Recycling, 129 (2018), pp. 232-239
[37]
G.A. Grell, S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, et al.. Fully coupled “online” chemistry within the WRF model. Atmos Environ, 39 (37) (2005), pp. 6957-6975
[38]
W. Peters, A.R. Jacobson, C. Sweeney, A.E. Andrews, T.J. Conway, K. Masarie, et al.. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci USA, 104 (48) (2007), pp. 18925-18930
[39]
H.F. Zhang, B.Z. Chen, I.T. van der Laan-Luijkx, J. Chen, G. Xu, J.W. Yan, et al.. Net terrestrial CO2 exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res D Atmospheres, 119 (6) (2014), pp. 3500-3515
[40]
V. Beck, T. Koch, R. Kretschmer, J. Marshall, R. Ahmadov, C. Gerbig, et al.. The WRF Greenhouse Gas Model (WRF-GHG). Max Planck Institute for Biogeochemistry, Jena (2010)
[41]
X. Tian, Z. Xie. Effects of sample density on the assimilation performance of an explicit four-dimensional variational data assimilation method. Sci China Ser D Earth Sci, 52 (11) (2009), pp. 1849-1856
[42]
X. Tian, Z. Xie, Q. Sun. A POD-based ensemble four-dimensional variational assimilation method. Tellus A Dyn Meteorol Oceanogr, 63 (4) (2011), pp. 805-816
[43]
M.J. Iacono, J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, W.D. Collins. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res D Atmospheres, 113 (D13) (2008), Article D13103
[44]
J. Dudhia. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 46 (20) (1989), pp. 3077-3107
[45]
S.Y. Hong, Y. Noh, J. Dudhia. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 134 (9) (2006), pp. 2318-2341
[46]
F. Chen, J. Dudhia. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev, 129 (4) (2001), pp. 569-585
[47]
J.S. Kain. The Kain-Fritsch convective parameterization: an update. J Appl Meteorol, 43 (1) (2004), pp. 170-181
[48]
T. Feng, W. Zhou, S. Wu, Z. Niu, P. Cheng, X. Xiong, et al.. High-resolution simulation of wintertime fossil fuel CO2 in Beijing, China: characteristics, sources, and regional transport. Atmos Environ, 198 (2019), pp. 226-235
[49]
C.R. Martin, N. Zeng, A. Karion, K. Mueller, S. Ghosh, I. Lopez-Coto, et al.. Investigating sources of variability and error in simulations of carbon dioxide in an urban region. Atmos Environ, 199 (2019), pp. 55-69
[50]
Y. Diao, J. Huang, C. Liu, J. Cui, S. Liu. A modeling study of CO2 flux and concentrations over the Yangtze River Delta using the WRF-GHG model. Chin J Atmos Sci, 39 (2015), pp. 849-860. Chinese
[51]
M. Guo, J. Xu, X. Wang, H. He, J. Li, L. Wu. Estimating CO2 concentration during the growing season from MODIS and GOSAT in East Asia. Int J Remote Sens, 36 (17) (2015), pp. 4363-4383
[52]
M.L. Fischer, N. Parazoo, K. Brophy, X. Cui, S. Jeong, J. Liu, et al.. Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. J Geophys Res D Atmospheres, 122 (6) (2017), pp. 3653-3671
[53]
T. Zheng, N.H. French, M. Baxter. Development of the WRF-CO2 4D-Var assimilation system v1. 0. Geosci Model Dev, 11 (5) (2018), pp. 1725-1752
AI Summary AI Mindmap
PDF(3622 KB)

Accesses

Citations

Detail

Sections
Recommended

/