Targeted Catalytic Cracking to Olefins (TCO): Reaction Mechanism, Production Scheme, and Process Perspectives

Youhao Xu, Yanfen Zuo, Wenjie Yang, Xingtian Shu, Wei Chen, Anmin Zheng

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 100-109.

PDF(1831 KB)
PDF(1831 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 100-109. DOI: 10.1016/j.eng.2023.02.018
Research Frontiers of Chemical Engineering—Review
Review

Targeted Catalytic Cracking to Olefins (TCO): Reaction Mechanism, Production Scheme, and Process Perspectives

Author information +
History +

Abstract

Light olefins are important organic building blocks in the chemicals industry. The main low-carbon olefin production methods, such as catalytic cracking and steam cracking, have considerable room for improvement in their utilization of hydrocarbons. This review provides a thorough overview of recent studies on catalytic cracking, steam cracking, and the conversion of crude oil processes. To maximize the production of light olefins and reduce carbon emissions, the perceived benefits of various technologies are examined. Taking olefin generation and conversion as a link to expand upstream and downstream processes, a targeted catalytic cracking to olefins (TCO) process is proposed to meet current demands for the transformation of oil refining into chemical production. The main innovations of this process include a multiple feedstock supply, the development of medium-sized catalysts, and a diameter-transformed fluidized-bed reactor with different feeding schemes. In combination with other chemical processes, TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.

Graphical abstract

Keywords

Light olefins / Steam cracking / Catalytic cracking / TCO process / Oil processing revolution

Cite this article

Download citation ▾
Youhao Xu, Yanfen Zuo, Wenjie Yang, Xingtian Shu, Wei Chen, Anmin Zheng. Targeted Catalytic Cracking to Olefins (TCO): Reaction Mechanism, Production Scheme, and Process Perspectives. Engineering, 2023, 30(11): 100‒109 https://doi.org/10.1016/j.eng.2023.02.018

References

[1]
J.W. Chen, Y.H. Xu. [Fluid catalytic cracking processes and engineering]. ( 3rd ed.), China Petrochemical Press, Beijing ( 2015) [Chinese].
[2]
W. Letzsch. Fluid catalytic cracking (FCC) in petroleum refining. S.A. Treese, P.R. Pujadó, D.S.J. Jones (Eds.), Handbook of petroleum processing, Springer International Publishing, Cham ( 2015), pp. 261-316 DOI: 10.1007/978-3-319-14529-7_2
[3]
S.A. Treese, P.R. Pujadó, D.S.J. Jones (Eds.), Handbook of petroleum processing, Springer International Publishing, Cham ( 2015)
[4]
Y.H. Xu. Advance in China fluid catalytic cracking (FCC) process. Sci China Chem, 44 (1) ( 2014), pp. 13-23
[5]
Y.H. Xu, X.Q. Wang. Advance in FCC process reaction chemistry. Eng Sci, 9 (8) ( 2007), pp. 6-14 [Chinese]. DOI: 10.1021/jp066649t
[6]
X.H. Cao. Strategic research on promoting coordinated development of refining and automobile industries. Engineering, 21 (3) ( 2019), pp. 61-69 DOI: 10.15302/j-sscae-2019.03.005
[7]
Y.H. Xu, J.S. Zhang, J. Long, M.Y. He, X. Hui, X.R. Hao. Development and commercial application of FCC process for maximizing iso-paraffins (MIP) in cracked naphtha. Eng Sci, 5 (5) ( 2003), pp. 55-58 [Chinese].
[8]
Y. Xu, S. Cui. A novel fluid catalytic cracking process for maximizing iso-paraffins: from fundamentals to commercialization. Front Chem Sci Eng, 12 (1) ( 2018), pp. 9-23 DOI: 10.1007/s11705-017-1696-1
[9]
Y.H. Xu, X. Wang, W. Lin, L. Xu, D.Q. Zhang. Development of core technology and establishment of technical route to support continuous upgrading of vehicle gasoline quality in China. Pet Process Petrochem, 52 (10) ( 2021), pp. 126-135 [Chinese].
[10]
Y.H. Xu, W.J. Yang, X. Wang. Development and application of core technologies and technical routes supporting continuous upgrading of gasoline quality in China—theoretical basis and industrial practice of olefin content control in FCC gasoline. Pet Process Petrochem, 53 (9) ( 2022), pp. 1-9 [Chinese].
[11]
Y.H. Xu, X. Wang, D.Q. Zhang, L. Xu, W. Lin. Development and application of core technologies and technical routes supporting continuous upgrading of gasoline quality in China—establishment, in-depth development and industrial application of step-by-step integrated process route for olefin reduction and desulfurization of FCC gasoline. Pet Process Petrochem, 53 (10) ( 2022), pp. 1-8 [Chinese].
[12]
C. Stanley, G. Matthew, B. Marion. Advances in crude to chemicals. Proceedings of the 117th AFPM Annual Meeting; 2019 Mar 17-19; New York: Curran Associates, Inc., San Antonio, TX, USA ( 2019), pp. 19-45
[13]
Worldwide Refining Business Digest Group. Global refining future pivots to PC predicted by IHS Markit and WoodMac. Worldw Refin Bus Dig, 3 ( 2021), p. 166
[14]
A decade of energy revolution in China (2021-2030). Report. Beijing: Development Research Center of the State Council, Institute of Resources and Environmental Policy; 2021. Chinese.
[15]
X.H. Cao. Technical route of carbon dioxide emissions peak and carbon neutrality in oil refining industry. Pet Refin Eng, 52 (1) ( 2022), pp. 1-10 [Chinese].
[16]
F.E. Imbert, R.M. Marshall. The mechanism and rate parameters for the pyrolysis of n-hexane in the range 723-823 K Int J Chem Kinet, 19 (2) ( 1987), pp. 81-103 DOI: 10.1002/kin.550190202
[17]
Y.H. Xu, Y.F. Zuo, X.H. Bai, L.Y. Du, Y.Y. Han. Development background, development idea and conceptual design of FCC process for targeted cracking to light olefins. Pet Process Petrochem, 52 (8) ( 2021), pp. 1-11 [Chinese].
[18]
Y.H. Xu, Y.F. Zuo, X.T. Shu. An exploratory study on D-, F- and G-type β-scission reactions of carbenium ions over ZSM-5 zeolites. Acta Petrol Sin, 37 (5) ( 2021), pp. 967-973
[19]
S.A. Chernyak, M. Corda, J.P. Dath, V.V. Ordomsky, A.Y. Khodakov. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev, 51 (18) ( 2022), pp. 7994-8044 DOI: 10.1039/d1cs01036k
[20]
M. Fakhroleslam, S.M. Sadrameli. Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: process modeling and simulation. Fuel, 252 ( 2019), pp. 553-566
[21]
S. Suganuma, N. Katada. Innovation of catalytic technology for upgrading of crude oil in petroleum refinery. Fuel Process Technol, 208 ( 2020), p. 106518
[22]
Q. Wu. Acidic and basic catalytic cracking technologies and its development prospects for crude oil to chemicals. Fuel, 332 (Pt 2) ( 2023), p. 126132
[23]
A. Tanimu, G. Tanimu, H. Alasiri, A. Aitani. Catalytic cracking of crude oil: mini review of catalyst formulations for enhanced selectivity to light olefins. Energy Fuels, 36 (10) ( 2022), pp. 5152-5166 DOI: 10.1021/acs.energyfuels.2c00567
[24]
E.N. Shafei, M.Z. Albahar, M.F. Aljishi, A.N. Aljishi, A.S. Alnasir, H.H. Al-Badairy, et al.. Naphtha catalytic cracking to olefins over zirconia-titania catalyst. React Chem Eng, 7 (1) ( 2021), pp. 123-132
[25]
S.M. Sadrameli. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review. Fuel, 140 ( 2015), pp. 102-115
[26]
I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin. New trends in olefin production. Engineering, 3 (2) ( 2017), pp. 171-178
[27]
N. Rahimi, R. Karimzadeh. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A, 398 (1-2) ( 2011), pp. 1-17
[28]
A. Akah, J. Williams, M. Ghrami. An overview of light olefins production via steam enhanced catalytic cracking. Catal Surv Asia, 23 (4) ( 2019), pp. 265-276 DOI: 10.1007/s10563-019-09280-6
[29]
J.S. Plotkin. The changing dynamics of olefin supply/demand. Catal Today, 106 (1-4) ( 2005), pp. 10-14
[30]
B. Yuan, J. Li, W. Du, F. Qian. Study on co-cracking performance of different hydrocarbon mixture in a steam pyrolysis furnace. Chin J Chem Eng, 24 (9) ( 2016), pp. 1252-1262
[31]
K. Keyvanloo, J. Towfighi, S.M. Sadrameli, A. Mohamadalizadeh. Investigating the effect of key factors, their interactions and optimization of naphtha steam cracking by statistical design of experiments. J Anal Appl Pyrolysis, 87 (2) ( 2010), pp. 224-230
[32]
I. Amghizar, J. Dedeyne, D.J. Brown, G.B. Marin, K.M. Van Geem. Sustainable innovations in steam cracking: CO2 neutral olefin production. React Chem Eng, 5 (2) ( 2020), pp. 239-257 DOI: 10.1039/c9re00398c
[33]
Z. Gholami, F. Gholami, Z. Tisler, M. Vakili. A review on the production of light olefins using steam cracking of hydrocarbons. Energies, 14 (23) ( 2021), p. 8190 DOI: 10.3390/en14238190
[34]
A. Holmen, O. Olsvik, O.A. Rokstad. Pyrolysis of natural gas: chemistry and process concepts. Fuel Proc Tech, 42 (2-3) ( 1995), pp. 249-267
[35]
A.B. Trenwith. The pyrolysis of ethane. A study of the dissociation reaction ̇ C2H5 → C2H4 + ̇H. J Chem Soc, 82 (3) ( 1986), pp. 457-463
[36]
Y. Nishimura. Development of catalytic cracking process and catalysts. Adv Porous Mater, 5 (1) ( 2017), pp. 17-25
[37]
F. Meirer, S. Kalirai, D. Morris, S. Soparawalla, Y. Liu, G. Mesu, et al.. Life and death of a single catalytic cracking particle. Sci Adv, 1 (3) ( 2015), p. e1400199
[38]
R. Sadeghbeigi. Fluid catalytic cracking handbook: an expert guide to the practical operation, design, and optimization of FCC units. ( 3rd ed.), Elsevier, Amsterdam ( 2012)
[39]
Z. Gholami, F. Gholami, Z. Tisler, M. Tomas, M. Vakili. A review on production of light olefins via fluid catalytic cracking. Energies, 14 (4) ( 2021), p. 1089 DOI: 10.3390/en14041089
[40]
M.F. Alotibi, B.A. Alshammari, M.H. Alotaibi, F.M. Alotaibi, S. Alshihri, R.M. Navarro, et al.. ZSM-5 zeolite based additive in FCC process: a review on modifications for improving propylene production. Catal Surv Asia, 24 (1) ( 2020), pp. 1-10 DOI: 10.1007/s10563-019-09285-1
[41]
T. Tsunoda, M. Sekiguchi. The omega process for propylene production by olefin interconversion. Catal Surv Asia, 12 (1) ( 2008), pp. 1-5 DOI: 10.1007/s10563-007-9023-3
[42]
Y.K. Park, C.W. Lee, N.Y. Kang, W.C. Choi, S. Choi, S.H. Oh, et al.. Catalytic cracking of lower-valued hydrocarbons for producing light olefins. Catal Surv Asia, 14 (2) ( 2010), pp. 75-84 DOI: 10.1007/s10563-010-9089-1
[43]
Y. Xu, Y. Zuo, Y. Ouyang, P. Wang, Y. Luo. Development and industrial practice of heavy oil catalytic cracking process over mesoporous zeolite for low coking low energy consumption and high olefin yield. Pet Process Petrochem, 53 (8) ( 2022), pp. 1-10 [Chinese].
[44]
X. Dong, S. Shaikh, J.R. Vittenet, J. Wang, Z. Liu, K.D. Bhatte, et al.. Fine tuning the diffusion length in hierarchical ZSM-5 to maximize the yield of propylene in catalytic cracking of hydrocarbons. ACS Sustain Chem Eng, 6 (11) ( 2018), pp. 15832-15840 DOI: 10.1021/acssuschemeng.8b04441
[45]
H. Konno, R. Ohnaka, J. Nishimura, T. Tago, Y. Nakasaka, T. Masuda. Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: effect of reduced crystal size on the reaction of naphthenes. Catal Sci Technol, 4 (12) ( 2014), pp. 4265-4273
[46]
L. Lin, C. Qiu, Z. Zhuo, D. Zhang, S. Zhao, H. Wu, et al.. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J Catal, 309 ( 2014), pp. 136-145
[47]
L.F. Lin, S.F. Zhao, D.W. Zhang, H. Fan, Y.M. Liu, M.Y. He. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5. ACS Catal, 5 (7) ( 2015), pp. 4048-4059 DOI: 10.1021/cs501967r
[48]
S. Kotrel, H. Knozinger, B.C. Gates. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater, 35-36 ( 2000), pp. 11-20
[49]
J.S. Buchanan, J.G. Santiesteban, W.O. Haag. Mechanistic considerations in acid-catalyzed cracking of olefins. J Catal, 158 (1) ( 1996), pp. 279-287
[50]
R.J. Quann, L.A. Green, S.A. Tabak, F.J. Krambeck. Chemistry of olefin oligomerization over ZSM-5 catalyst. Ind Eng Chem Res, 27 (4) ( 1988), pp. 565-570 DOI: 10.1021/ie00076a006
[51]
X. Huang, D. Aihemaitijiang, W.D. Xiao. Reaction pathway and kinetics of C3-C7 olefin transformation over high-silicon HZSM-5 zeolite at 400-490 °C. Chem Eng J, 280 ( 2015), pp. 222-232
[52]
V. Blay, E. Epelde, R. Miravalles, P.L. Alvarado. Converting olefins to propene: ethene to propene and olefin cracking. Catal Rev Sci Eng, 60 (2) ( 2018), pp. 278-1235
[53]
T. Von Aretin, S. Standl, M. Tonigold, O. Hinrichsen. Optimization of the product spectrum for 1-pentene cracking on ZSM-5 using single-event methodology. Part 1: two-zone reactor. Chem Eng J, 309 ( 2017), pp. 886-897
[54]
T.R. Koyama, Y. Hayashi, H. Horie, S. Kawauchi, A. Matsumoto, Y. Iwase, et al.. Key role of the pore volume of zeolite for selective production of propylene from olefins. Phys Chem Chem Phys, 12 (11) ( 2010), p. 2541 DOI: 10.1039/b921927g
[55]
A. Miyaji, Y. Sakamoto, Y. Iwase, T. Yashima, R. Koide, K. Motokura, et al.. Selective production of ethylene and propylene via monomolecular cracking of pentene over proton-exchanged zeolites: pentene cracking mechanism determined by spatial volume of zeolite cavity. J Catal, 302 ( 2013), pp. 101-114
[56]
H. Pines, W. Haag. Stereoselectivity in the carbanion-catalyzed isomerization of 1-butene. J Org Chem, 23 (2) ( 1958), pp. 328-329 DOI: 10.1021/jo01096a627
[57]
D. Jo, S.B. Hong, M.A. Camblor. Monomolecular skeletal isomerization of 1-butene over selective zeolite catalysts. ACS Catal, 5 (4) ( 2015), pp. 2270-2274 DOI: 10.1021/acscatal.5b00195
[58]
J. Weitkamp, Y. Traa. Isobutane/butene alkylation on solid catalysts. Where do we stand?. Catal Today, 49 (1-3) ( 1999), pp. 193-199
[59]
J. Li, T. Li, H. Ma, Q. Sun, C. Li, W. Ying, et al.. Kinetics of coupling cracking of butene and pentene on modified HZSM-5 catalyst. Chem Eng J, 346 ( 2018), pp. 397-405
[60]
S. Unverricht, S. Ernst, J. Weitkamp. Iso-butane/1-butene alkylation on zeolites Beta and MCM-22. Stud Surf Sci Catal, 84 ( 1994), pp. 1693-1700
[61]
W.O. Haag, H. Pines. The kinetics of carbanion-catalyzed isomerization of butenes and 1-pentene. J Am Chem Soc, 82 (2) ( 1960), pp. 387-391 DOI: 10.1021/ja01487a033
[62]
S. Kozuch, S. Shaik. How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res, 44 (2) ( 2011), pp. 101-110 DOI: 10.1021/ar1000956
[63]
Y. Sun, C.W. Zhou, K.P. Somers, H.J. Curran. Ab initio/transition-state theory study of the reactions of Ċ5H9 species of relevance to 1,3-pentadiene, part I: potential energy surfaces, thermochemistry, and high-pressure limiting rate constants. J Phys Chem A, 123 (42) ( 2019), pp. 9019-9052 DOI: 10.1021/acs.jpca.9b06628
[64]
X.H. Meng, C.M. Xu, J.S. Gao, L. Li. Studies on catalytic pyrolysis of heavy oils: reaction behaviors and mechanistic pathways. Appl Catal A, 294 (2) ( 2005), pp. 168-176
[65]
J. Wan, Y. Wei, Z. Liu, B. Li, Y. Qi, M. Li, et al.. A ZSM-5-based catalyst for efficient production of light olefins and aromatics from fluidized-bed naphtha catalytic cracking. Catal Lett, 124 (1-2) ( 2008), pp. 150-156 DOI: 10.1007/s10562-008-9445-1
[66]
M. Alabdullah, A. Rodriguez-Gomez, T. Shoinkhorova, A. Dikhtiarenko, A.D. Chowdhury, I. Hita, et al.. One-step conversion of crude oil to light olefins using a multi-zone reactor. Nat Catal, 4 (3) ( 2021), pp. 233-241 DOI: 10.1038/s41929-021-00580-7
[67]
Zuo YF, Xu YH, Shu XT, Du LY, Xie XY, Guo XK, et al. inventors; China Petroleum and Chemical Corporation, Sinopec Research Institute of Petroleum Processing, assignees. A catalytic conversion method for maximizing propylene production. China patent CN114763486B. 2023 Jul 11.
[68]
Zuo YF, Xu YH, Shu XT, Han YY, Du LY, Xie XY, et al. inventors; China Petroleum and Chemical Corporation, Sinopec Research Institute of Petroleum Processing, assignees. A catalytic conversion method for producing ethylene and propylene. China patent CN114763483B. 2023 Jul 11.
[69]
F.D. Yu, Y.W. Song, X.H. Bai, B. Yu, Y. Zhao, Z.J. Chen, et al.. Industrial test of MFP technology in FCC unit. Pet Process Petrochem, 53 (7) ( 2022), pp. 18-22 [Chinese].
Funding
the National Key Research and Development Program of China(2021YFA1501204); China Petroleum and Chemical Corporation (Sinopec Corp.), China(ST22001)
AI Summary AI Mindmap
PDF(1831 KB)

Accesses

Citations

Detail

Sections
Recommended

/