High Spatial Resolution Ozone Profiles Retrieved from the First Chinese Ultraviolet–Visible Hyperspectral Satellite Instrument

Fei Zhao, Cheng Liu, Qihou Hu, Congzi Xia, Chengxin Zhang, Wenjing Su

Engineering ›› 2024, Vol. 32 ›› Issue (1) : 106-115.

PDF(3812 KB)
PDF(3812 KB)
Engineering ›› 2024, Vol. 32 ›› Issue (1) : 106-115. DOI: 10.1016/j.eng.2023.02.020
Research
Article

High Spatial Resolution Ozone Profiles Retrieved from the First Chinese Ultraviolet–Visible Hyperspectral Satellite Instrument

Author information +
History +

Abstract

Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport, as well as when analyzing the physical and chemical properties of the atmosphere. One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations. The Environmental Trace Gases Monitoring Instrument (EMI) deployed on the Gaofen-5 satellite is the first Chinese ultraviolet–visible hyperspectral spectrometer. However, retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio. The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87% of the EMI pixels. Therefore, we developed an algorithm specific to the characteristics of the EMI. The fitting residuals are smaller than 0.3% in most regions. The retrieved ozone profiles were in good agreement with ozonesonde data, with maximum mean biases of 20% at five latitude bands. By applying EMI averaging kernels to the ozonesonde profiles, the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data. The lower layers (0–7.5 km) of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center (CNEMC). However, the upper layers (9.7–16.7 km) of the ozone profiles show different trends, with the ozone peak occurring at an altitude of 9.7–16.7 km in March, 2019. A stratospheric intrusion event in central China from August 11 to 15, 2019, is captured using the EMI ozone profiles, potential vorticity data, and relative humidity data. The increase in the CNEMC ozone concentration showed that downward transport enhanced surface ozone pollution.

Highlights

• Capturing different trends of ozone between near-surface and tropopause in Beijing-Tianjin_Hebei region.

Graphical abstract

Keywords

Ozone profiles / EMI / Soft calibration / Floor noise correction / Stratospheric ozone intrusion

Cite this article

Download citation ▾
Fei Zhao, Cheng Liu, Qihou Hu, Congzi Xia, Chengxin Zhang, Wenjing Su. High Spatial Resolution Ozone Profiles Retrieved from the First Chinese Ultraviolet–Visible Hyperspectral Satellite Instrument. Engineering, 2024, 32(1): 106‒115 https://doi.org/10.1016/j.eng.2023.02.020

References

[1]
M. Norval, A.P. Cullen, F.R. de Gruijl, J. Longstreth, Y. Takizawa, R.M. Lucas, et al.. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci, 6 ( 2007), pp. 232-251
[2]
D. Nuvolone, D. Petri, F. Voller. The effects of ozone on human health. Environ Sci Pollut Res Int, 25 ( 2018), pp. 8074-8088
[3]
J. Ma, X. Xu, C. Zhao, P. Yan. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv Atmos Sci, 29 ( 2012), pp. 1006-1026
[4]
H. Che, X. Xia, H. Zhao, O. Dubovik, B.N. Holben, P. Goloub, et al.. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network. Atmos Chem Phys, 19 ( 2019), pp. 11843-11864
[5]
C. Zhang, C. Liu, Q. Hu, Z. Cai, W. Su, C. Xia, et al.. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017. Light Sci Appl, 8 ( 2019), p. 100
[6]
X. Lu, S. Zhang, J. Xing, Y. Wang, W. Chen, D. Ding, et al.. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering, 6 ( 2020), pp. 1423-1431
[7]
S. Wang, J. Hao. Air quality management in China: issues, challenges, and options. J Environ Sci, 24 ( 2012), pp. 2-13
[8]
C. Liu, C. Xing, Q. Hu, Q. Li, H. Liu, Q. Hong, et al.. Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering, 19 ( 2022), pp. 71-83
[9]
T. Wang, L. Xue, P. Brimblecombe, Y.F. Lam, L. Li, L. Zhang. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ, 575 ( 2017), pp. 1582-1596
[10]
W. Wang, D.D. Parrish, S. Wang, F. Bao, R. Ni, X. Li, et al.. Long-term trend of ozone pollution in China during 2014-2020: distinct seasonal and spatial characteristics and ozone sensitivity. Atmos Chem Phys, 22 ( 2022), pp. 8935-8949
[11]
K.J. Maji, A. Namdeo.Continuous increases of surface ozone and associated premature mortality growth in China during2015-2019. Environ Pollut, 269 ( 2021), Article 116183
[12]
X. Lu, L. Zhang, X. Wang, M. Gao, K. Li, Y. Zhang, et al.. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ Sci Technol Lett, 7 ( 2020), pp. 240-247
[13]
T. Qin, J. Wang, R. Li, C. Fang. Diurnal and inter-annual variability of surface ozone in Baicheng region. China Tellus B Chem Phys Meteorol, 73 ( 2021), pp. 1-10
[14]
W. Xu, X. Xu, M. Lin, W. Lin, D. Tarasick, J. Tang, et al.. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China—part 2: the roles of anthropogenic emissions and climate variability. Atmos Chem Phys, 18 ( 2018), pp. 773-798
[15]
Y. Wang, H. Wang, W. Wang. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event. Atmos, 11 ( 2020), p. 164
[16]
X. Wang, Y. Wu, W. Randel, S. Tilmes.Stratospheric contribution to the summertime high surface ozone events over the western united states. Environ Res Lett, 15 (10) ( 2020), p. 1040a6
[17]
D. Akritidis, E. Katragkou, P. Zanis, I. Pytharoulis, D. Melas, J. Flemming, et al.. A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation. Atmos Chem Phys, 18 ( 2018), pp. 15515-15534
[18]
J.W. Greenslade, S.P. Alexander, R. Schofield, J.A. Fisher, A.K. Klekociuk. Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere. Atmos Chem Phys, 17 ( 2017), pp. 10269-10290
[19]
P.K. Bhartia, R.D. McPeters, C.L. Mateer, L.E. Flynn, C. Wellemeyer. Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. J Geophys Res D Atmospheres, 101 ( 1996), pp. 18793-18806
[20]
Y. Wang, Y. Wang, W. Wang, Z. Zhang, J. , L. Fu, et al.. FY-3 satellite ultraviolet total ozone unit. Chin Sci Bull, 55 ( 2010), pp. 84-89
[21]
X.X. Zhang, B. Chen, F. He, K.F. Song, L.P. He, S.J. Liu, et al.. Wide-field auroral imager onboard the Fengyun satellite. Light Sci Appl, 8 ( 2019), p. 47
[22]
X. Liu, K. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, et al.. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: algorithm description and validation. J Geophys Res, 110 (D20) ( 2005), p. D20307
[23]
G.M. Miles, R. Siddans, B.J. Kerridge, B.G. Latter, N.A.D. Richards. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation. Atmos Meas Tech, 8 ( 2015), pp. 385-398
[24]
J. Bak, X. Liu, J.H. Kim, D.P. Haffner, K. Chance, K. Yang, et al.. Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals. Atmos Meas Tech, 10 ( 2017), pp. 4373-4388
[25]
X. Liu, P.K. Bhartia, K. Chance, R.J.D. Spurr, T.P. Kurosu. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos Chem Phys, 10 ( 2010), pp. 2521-2537
[26]
N. Mettig, M. Weber, A. Rozanov, C. Arosio, J.P. Burrows, P. Veefkind, et al.. Ozone profile retrieval from nadir TROPOMI measurements in the UV range. Atmos Meas Tech, 14 ( 2021), pp. 6057-6082
[27]
F.T. Barath, M.C. Chavez, R.E. Cofield, D.A. Flower, M.A. Frerking, M.B. Gram, et al.. The Upper Atmosphere Research Satellite microwave limb sounder instrument. J Geophys Res D Atmospheres, 98 ( 1993), pp. 10751-10762
[28]
P. Ma, L. Chen, Z. Wang, S. Zhao, Q. Li, M. Tao, et al.. Ozone profile retrievals from the Cross-Track Infrared Sounder. IEEE Trans Geosci Remote Sens, 54 ( 2016), pp. 3985-3994
[29]
M.D. Goldberg, Y. Qu, L.M. McMillin, W. Wolf, Z. Lihang, M. Divakarla. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans Geosci Remote Sens, 41 ( 2003), pp. 379-389
[30]
D. Fu, J.R. Worden, X. Liu, S.S. Kulawik, K.W. Bowman, V. Natraj. Characterization of ozone profiles derived from Aura TES and OMI radiances. Atmos Chem Phys, 13 ( 2013), pp. 3445-3462
[31]
J. Bak, X. Liu, R. Spurr, K. Yang, C.R. Nowlan, C.C. Miller, et al.. Radiative transfer acceleration based on the principal component analysis and lookup table of corrections: optimization and application to UV ozone profile retrievals. Atmos Meas Tech, 14 ( 2021), pp. 2659-2672
[32]
L. Costantino, J. Cuesta, E. Emili, A. Coman, G. Foret, G. Dufour, et al.. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite. Atmos Meas Tech, 10 ( 2017), pp. 1281-1298
[33]
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, et al.. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe. Atmos Chem Phys, 13 ( 2013), pp. 9675-9693
[34]
N. Mettig, M. Weber, A. Rozanov, J.P. Burrows, P. Veefkind, A.M. Thompson, et al.. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements. Atmos Meas Tech, 15 ( 2022), pp. 2955-2978
[35]
D. Fu, S.S. Kulawik, K. Miyazaki, K.W. Bowman, J.R. Worden, A. Eldering, et al.. Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation. Atmos Meas Tech, 11 ( 2018), pp. 5587-15505
[36]
M.J. Zhao, F.Q. Si, H.J. Zhou, S.M. Wang, Y. Jiang, W.Q. Liu. Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument (EMI). Atmos Meas Tech, 11 ( 2018), pp. 5403-5419
[37]
C. Zhang, C. Liu, Y. Wang, F. Si, H. Zhou, M. Zhao, et al.. Preflight evaluation of the performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Trans Geosci Remote Sens, 56 ( 2018), pp. 3323-3332
[38]
C. Xia, C. Liu, Z. Cai, F. Zhao, W. Su, C. Zhang, et al.. First sulfur dioxide observations from the Environmental Trace Gases Monitoring Instrument (EMI) onboard the GeoFen-5 satellite. Sci Bull, 66 ( 2021), pp. 969-973
[39]
C. Zhang, C. Liu, K.L. Chan, Q. Hu, H. Liu, B. Li, et al.. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light Sci Appl, 9 ( 2020), p. 66
[40]
W. Su, C. Liu, Q. Hu, C. Zhang, H. Liu, C. Xia, et al.. First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: locating source of volatile organic compounds. Environ Pollut, 297 ( 2022), Article 118691
[41]
Y. Qian, Y. Luo, F. Si, H. Zhou, T. Yang, D. Yang, et al.. Total ozone columns from the Environmental Trace Gases Monitoring Instrument (EMI) using the DOAS method. Remote Sens, 13 (11) ( 2021), p. 2098
[42]
Q. Kleipool, A. Ludewig, L. Babić, R. Bartstra, R. Braak, W. Dierssen, et al.. Pre-launch calibration results of the TROPOMI payload on-board the Sentinel-5 Precursor satellite. Atmos Meas Tech, 11 (12) ( 2018), pp. 6439-6479
[43]
H.G.J. Smit, W. Straeter, B.J. Johnson, S.J. Oltmans, J. Davies, D.W. Tarasick, et al.. Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). J Geophys Res D Atmospheres, 112 (D19) ( 2007), p. D19306
[44]
G. Huang, X. Liu, K. Chance, K. Yang, P.K. Bhartia, Z. Cai, et al.. Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmos Meas Tech, 10 ( 2017), pp. 2455-2475
[45]
L. Gao, X. Yue, X. Meng, L. Du, Y. Lei, C. Tian, et al.. Comparison of ozone and PM2.5 concentrations over urban, suburban, and background sites in China. Adv Atmos Sci, 37 ( 2020), pp. 1297-1309
[46]
Y. Sun, H. Yin, X. Lu, J. Notholt, M. Palm, C. Liu, et al.. The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020. Atmos Chem Phys, 21 ( 2021), pp. 18589-18608
[47]
National Environmental Protection Standard of the People’s Republic of China. HJ 654-2013: Specifications and test procedures for ambient air quality continuous automated monitoring system for SO2, NO2, O3 and CO. Chinese standard. Beijing: China Environmental Science Press; 2013. Chinese.
[48]
F. Zhao, C. Liu, Z. Cai, X. Liu, J. Bak, J. Kim, et al.. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Sci Total Environ, 764 ( 2021), Article 142886
[49]
C.D. Rodgers. Inverse methods for atmospheric sounding: theory and practice. World Scientific, Singapore ( 2000)
[50]
H. Che, K. Gui, X. Xia, Y. Wang, B.N. Holben, P. Goloub, et al.. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos Chem Phys, 19 ( 2019), pp. 10497-10523
[51]
D.G. Loyola, S. Gimeno García, R. Lutz, A. Argyrouli, F. Romahn, R.J.D. Spurr, et al.. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmos Meas Tech, 11 ( 2018), pp. 409-427
[52]
C.E. Sioris, W.F.J. Evans. Impact of rotational Raman scattering in the O2 A band. Geophys Res Lett, 27 ( 2000), pp. 4085-4088
[53]
J. Bak, X. Liu, J.C. Wei, L.L. Pan, K. Chance, J.H. Kim. Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology. Atmos Meas Tech, 6 ( 2013), pp. 2239-2254
[54]
L.N. Lamsal, M. Weber, S. Tellmann, J.P. Burrows. Ozone column classified climatology of ozone and temperature profiles based on ozonesonde and satellite data. J Geophys Res D Atmospheres, 109 (D20) ( 2004), p. D20304
[55]
J. Zhang, D. Li, J. Bian, Y. Xuan, H. Chen, Z. Bai, et al.. Long-term ozone variability in the vertical structure and integrated column over the north China Plain: results based on ozonesonde and Dobson measurements during 2001-2019. Environ Res Lett, 16 (7) ( 2021), Article 074053
[56]
T. Trickl, H. Vogelmann, L. Ries, M. Sprenger. Very high stratospheric influence observed in the free troposphere over the northern Alps—just a local phenomenon?. Atmos Chem Phys, 20 ( 2020), pp. 243-266
[57]
P. Ma, H. Mao, J. Zhang, X. Yang, S. Zhao, Z. Wang, et al.. Satellite monitoring of stratospheric ozone intrusion exceptional events—a typical case of China in 2019. Atmos Pollut Res, 13 (2) ( 2022), Article 101297
[58]
T. Trickl, H. Vogelmann, H. Giehl, H.E. Scheel, M. Sprenger, A. Stohl. How stratospheric are deep stratospheric intrusions?. Atmos Chem Phys, 14 ( 2014), pp. 9941-9961
AI Summary AI Mindmap
PDF(3812 KB)

Accesses

Citations

Detail

Sections
Recommended

/