Large-Scale Preparation of Mechanically High-Performance and Biodegradable PLA/PHBV Melt-Blown Nonwovens with Nanofibers

Gaohui Liu, Jie Guan, Xianfeng Wang, Jianyong Yu, Bin Ding

Engineering ›› 2024, Vol. 39 ›› Issue (8) : 244-252.

PDF(5228 KB)
PDF(5228 KB)
Engineering ›› 2024, Vol. 39 ›› Issue (8) : 244-252. DOI: 10.1016/j.eng.2023.02.021
Research
Article

Large-Scale Preparation of Mechanically High-Performance and Biodegradable PLA/PHBV Melt-Blown Nonwovens with Nanofibers

Author information +
History +

Abstract

Biodegradable polylactic acid (PLA) melt-blown nonwovens are attractive candidates to replace nondegradable polypropylene melt-blown nonwovens. However, it is still an extremely challenging task to prepare PLA melt-blown nonwovens with sufficient mechanical properties for practical application. Herein, we report a simple strategy for the large-scale preparation of biodegradable PLA/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) melt-blown nonwovens with high strength and excellent toughness. In this process, a small amount of PHBV is added to PLA to improve the latter’s crystallization rate and crystallinity. In addition, when the PHBV content increases from 0 to 7.5 w t %, the diameters of the PLA/PHBV melt-blown fibers decrease significantly (with the proportion of nanofibers increasing from 7.7% to 42.9%). The resultant PLA/PHBV (5 wt% PHBV) melt-blown nonwovens exhibit the highest mechanical properties. The tensile stress, elongation, and toughness of PLA/PHBV (5 wt%PHBV) melt-blown nonwovens reach 2.5 MPa, 45 %, and 1.0 M J m - 3, respectively. More importantly, PLA/PHBV melt-blown nonwovens can be completely degraded into carbon dioxide and water after four months in the soil, making them environmentally friendly. A general tensile-failure model of melt-blown nonwovens is proposed in this study, which may shed light on mechanical performance enhancement for nonwovens.

Graphical abstract

Keywords

PLA / PHBV / Melt-blown / Biodegradable / Strength / Toughness

Cite this article

Download citation ▾
Gaohui Liu, Jie Guan, Xianfeng Wang, Jianyong Yu, Bin Ding. Large-Scale Preparation of Mechanically High-Performance and Biodegradable PLA/PHBV Melt-Blown Nonwovens with Nanofibers. Engineering, 2024, 39(8): 244‒252 https://doi.org/10.1016/j.eng.2023.02.021

References

[1]
A. Rahimi, J.M. Garcia. Chemical recycling of waste plastics for new materials production. Nat Rev Chem, 1 (6) (2017), p. 0046.
[2]
T. Someya, Z. Bao, G.G. Malliaras. The rise of plastic bioelectronics. Nature, 540 (7633) (2016), pp. 379-385.
[3]
Y. Zhu, C. Romain, C.K. Williams. Sustainable polymers from renewable resources. Nature, 540 (7633) (2016), pp. 354-362.
[4]
M. Záleská, M. Pavlíková, J. Pokorný, O. Jankovský, Z. Pavlík, R. Černý. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr Build Mater, 180 (2018), pp. 1-11.
[5]
W.J. Lamont. Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology, 15 (3) (2005), pp. 477-481.
[6]
J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran. Plastic rain in protected areas of the United States. Science, 368 (6496) (2020), pp. 1257-1260.
[7]
K.L. Law, N. Starr, T.R. Siegler, J.R. Jambeck, N.J. Mallos, G.H. Leonard. The United States’ contribution of plastic waste to land and ocean. Sci Adv, 6 (44) (2020), Article eabd0288.
[8]
C.M. Rochman, M.A. Browne, B.S. Halpern, B.T. Hentschel, E. Hoh, H.K. Karapanagioti, et al. Classify plastic waste as hazardous. Nature, 494 (7436) (2013), pp. 169-171.
[9]
R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, et al. Lost at sea: where is all the plastic>. Science, 304 (5672) (2004), p. 838.
[10]
H. Tong, X. Zhong, Z. Duan, X. Yi, F. Cheng, W. Xu, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: formation, aging factors, and toxicity. Sci Total Environ, 833 (2022), Article 155275.
[11]
A.A. de Souza Machado, C.W. Lau, W. Kloas, J. Bergmann, J.B. Bachelier, E. Faltin, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol, 53 (10) (2019), pp. 6044-6052.
[12]
Y. Sun, S. Shun, L. Chen, L. Liu, P. Song, W. Li, et al. Flame retardant and mechanically tough poly(lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol. Compos Commun, 6 (2017), pp. 1-5.
[13]
L. Li, X. Xu, B. Wang, P. Song, Q. Cao, Y. Yang, et al. Structure, chain dynamics and mechanical properties of poly(vinyl alcohol)/phytic acid composites. Compos Commun, 28 (2021), Article 100970.
[14]
V. Nagarajan, A.K. Mohanty, M. Misra. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng, 4 (6) (2016), pp. 2899-2916.
[15]
M.H. Lee, J. Lee, S.K. Jung, D. Kang, M.S. Park, G.D. Cha, et al. A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems. Adv Mater, 33 (10) (2021), p. 2004902.
[16]
B. Zhu, X. Wang, Q. Zeng, P. Wang, Y. Wang, C. Liu, et al. Enhanced mechanical properties of biodegradable poly(epsilon-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay. Compos Commun, 13 (2019), pp. 70-74.
[17]
W. Yang, G. Qi, H. Ding, P. Xu, W. Dong, X. Zhu, et al. Biodegradable poly(lactic acid)-poly (epsilon-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance. Compos Commun, 22 (2020), Article 100497.
[18]
S. Xie, Y. Zheng, Y. Zeng. Influence of die geometry on fiber motion and fiber attenuation in the melt-blowing process. Ind Eng Chem Res, 53 (32) (2014), pp. 12866-12871.
[19]
Y. Pu, J. Zheng, F. Chen, Y. Long, H. Wu, Q. Li, et al. Preparation of polypropylene micro and nanofibers by electrostatic-assisted melt blown and their application. Polymers, 10 (9) (2018), p. 959.
[20]
H. Liu, L. Liu, J. Yu, X. Yin, B. Ding. High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks. Compos Commun, 22 (2020), Article 100493.
[21]
S. Xie, Y. Zeng. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study. Ind Eng Chem Res, 51 (14) (2012), pp. 5346-5352.
[22]
S.P. Mohandas, L. Balan, J. Gopi, B.S. Anoop, P.S. Mohan, R. Philip, et al. Biocompatibility of polyhydroxybutyrate-co-hydroxyvalerate films generated from Bacillus cereus MCCB 281 for medical applications. Int J Biol Macromol, 176 ( 2021), pp. 244-252.
[23]
B. Duan, W.L. Cheung, M. Wang. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication, 3 (1) (2011), Article 015001.
[24]
S. Farah, D.G. Anderson, R. Langer. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev, 107 (2016), pp. 367-392.
[25]
J.M. Chacón, M.A. Caminero, E. Garcia-Plaza, P.J. Nunez. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des, 124 (2017), pp. 143-157.
[26]
A.L. Rivera-Briso, A. Serrano-Aroca. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications. Polymers, 10 (7) (2018), p. 732.
[27]
L. Chu, J. Wang. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity. Chemosphere, 155 (2016), pp. 463-470.
[28]
G. Xue, B. Sun, L. Han, B. Liu, H. Liang, Y. Pu, et al. Triblock copolymer compatibilizers for enhancing the mechanical properties of a renewable bio-polymer. Polymers, 14 (13) (2022), p. 2734.
[29]
M. Eichers, D. Bajwa, J. Shojaeiarani, S. Bajwa. Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites. Ind Crops Prod, 183 (2022), Article 114981.
[30]
M. Zhang, C. Jiang, Q. Wu, G. Zhang, F. Liang, Z. Yang. Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite gas barrier membranes by anisotropic janus nanosheets compartibilizers. ACS Macro Lett, 11 (5) (2022), pp. 657-662.
[31]
B. Zhu, Y. Wang, H. Liu, J. Ying, C. Liu, C. Shen. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos Sci Technol, 190 (2020), Article 108048.
[32]
X. Yu, X. Wang, Z. Zhang, S. Peng, H. Chen, X. Zhao. High-performance fully bio-based poly(lactic acid)/ polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy. Polym Test, 78 ( 2019), Article 105980.
[33]
A. Guinault, G. Dutarte, M. Boufarguine, G. Miquelard-Garnier, C. Sollogoub. Morphology-crystallinity relationship in PLA-PHBV blends prepared via extrusion. Key Eng Mater, 554-557 ( 2013), pp. 1707-1714.
[34]
Q. Liu, C. Wu, H. Zhang, B. Deng. Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: morphology, structure, and property. J Appl Polym Sci, 132 (42) (2015), p. 42689.
[35]
A.P.B. Silva, L.S. Montagna, F.R. Passador, M.C. Rezende, A.P. Lemes. Biodegradable nanocomposites based on PLA/PHBV blend reinforced with carbon nanotubes with potential for electrical and electromagnetic applications. Express Polym Lett, 15 (10) (2021), pp. 987-1003.
[36]
S. Wang, P. Ma, R. Wang, S. Wang, Y. Zhang, Y. Zhang. Mechanical, thermal and degradation properties of poly(d, l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym Degrad Stabil, 93 (7) (2008), pp. 1364-1369.
[37]
J. Yang, H. Zhu, C. Zhang, Q. Jiang, Y. Zhao, P. Chen, et al. Transesterification induced mechanical properties enhancement of PLLA/PHBV bio-alloy. Polymer, 83 (2016), pp. 230-238.
[38]
L. Li, W. Huang, B. Wang, W. Wei, Q. Gu, P. Chen. Properties and structure of polylactide/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 68 (2015), pp. 183-194.
[39]
A. Podgórski, A. Balazy, L. Gradon. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci, 61 (20) (2006), pp. 6804-6815.
[40]
M.A. Hassan, B.Y. Yeom, A. Wilkie, B. Pourdeyhimi, S.A. Khan. Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci, 427 (2013), pp. 336-344.
[41]
Y. Cai, J. Lv, J. Feng. Spectral characterization of four kinds of biodegradable plastics:poly(lactic acid), poly(butylenes adipate-co-terephthalate), poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ, 21 (1) (2013), pp. 108-114.
[42]
H. Zhou, T.B. Green, Y.L. Joo. The thermal effects on electrospinning of polylactic acid melts. Polymer, 47 (21) (2006), pp. 7497-7505.
[43]
X. Zhu, Z. Dai, K. Xu, Y. Zhao, Q. Ke. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation. Macromol Mater Eng, 304 (12) (2019), p. 1900350.
[44]
A. Alassod, G. Xu. Comparative study of polypropylene nonwoven on structure and wetting characteristics. J Textil Inst, 112 (7) (2021), pp. 1100-1107.
[45]
J. Feng. Preparation and properties of poly(lactic acid) fiber melt blown non-woven disordered mats. Mater Lett, 189 (2017), pp. 180-183.
[46]
M. Latwinska, J. Sojka-Ledakowicz, M. Kudzin. Influence of poly(3-hydroxybutyrate) addition on the properties of poly(lactic acid) nonwoven obtained by the melt-blown technique. Polimery, 60 (7-8) (2015), pp. 486-491.
[47]
H. Sun, H. Zhang, Q. Zhen, S. Wang, J. Hu, J. Cui, et al. Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. J Polym Res, 29 (8) (2022), p. 319.
[48]
K. Szuman, I. Krucinska, M. Bogun, Z. Draczynski. PLA/PHA-biodegradable blends for pneumothermic fabrication of nonwovens. AUTEX Res J, 16 (3) (2016), pp. 119-127.
[49]
D. Vadas, D. Kmetyko, G. Marosi, K. Bocz. Application of melt-blown poly(lactic acid) fibres in self-reinforced composites. Polymers, 10 (7) (2018), p. 766.
[50]
B. Yu, Y. Cao, H. Sun, J. Han. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens. J Polym Environ, 25 (2) (2017), pp. 510-517.
[51]
F. Zhu, J. Su, Y. Zhao, M. Hussain, S. Yasin, B. Yu, et al. Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid). Text Res J, 89 (19-20) (2019), pp. 4173-4185.
[52]
H.Y. Sintim, A.I. Bary, D.G. Hayes, M.E. English, S.M. Schaeffer, C.A. Miles, et al. Release of micro- and nano-particles from biodegradable plastic during in situ composting. Sci Total Environ, 675 (2019), pp. 686-693.
AI Summary AI Mindmap
PDF(5228 KB)

Accesses

Citations

Detail

Sections
Recommended

/