Bioactive Components of Chinese Herbal Medicines in the Treatment of Glucose and Lipid Metabolism Disorders: Evidence and Potential Mechanisms

Ying Zhang, Jiaming Ju, Lei Jiao, Baofeng Yang

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 73-82.

PDF(2876 KB)
PDF(2876 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 73-82. DOI: 10.1016/j.eng.2023.03.004
Research
Review

Bioactive Components of Chinese Herbal Medicines in the Treatment of Glucose and Lipid Metabolism Disorders: Evidence and Potential Mechanisms

Author information +
History +

Abstract

Disturbed cholesterol and glucose homeostasis play crucial roles in the development of various diseases such as cardiovascular diseases, cerebrovascular diseases, central nervous system diseases, and cancer. An increasing number of studies have shown that excessive body fat accumulation is associated with type 2 diabetes or insulin resistance in a vicious cycle. This vicious cycle promotes the occurrence and development of the aforementioned diseases. Therefore, stabilizing the blood lipids and blood glucose of patients is the predominant strategy for improving the symptoms of patients with cardiovascular, cerebrovascular, and central nervous system diseases. Traditional Chinese medicine, mainly Chinese herbal medicine (CHM), has a history of more than 2000 years in China, which has established a unique theory and accumulated a great wealth of clinical experience. Moreover, CHM has been widely used in China and other countries for the treatment of cardiovascular and cerebrovascular diseases, with the advantages of preventing and curing hyperlipidemia, diabetes, hypertension, and other diseases. However, the use of CHM in Western countries remains rather limited, partly because of the incomplete understanding of multiple complex components and uncertain pharmacological mechanisms. Herein, we review and discuss the benefits, molecular mechanisms, and clinical research progress of bioactive components of CHM and their preparations as therapeutics for hyperlipidemia and hyperglycemia.

Graphical abstract

Keywords

Chinese herbal medicines / Hyperlipidemia / Hyperglycemia / Cardiovascular and cerebrovascular diseases

Cite this article

Download citation ▾
Ying Zhang, Jiaming Ju, Lei Jiao, Baofeng Yang. Bioactive Components of Chinese Herbal Medicines in the Treatment of Glucose and Lipid Metabolism Disorders: Evidence and Potential Mechanisms. Engineering, 2023, 29(10): 73‒82 https://doi.org/10.1016/j.eng.2023.03.004

References

[1]
N. Li, H. Zhou, Q. Tang. Red blood cell distribution width: a novel predictive indicator for cardiovascular and cerebrovascular diseases. Dis Markers, 2017 (2017), p. 7089493
[2]
P. Hao, F. Jiang, J. Cheng, L. Ma, Y. Zhang, Y. Zhao. Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J Am Coll Cardiol, 69 (24) ( 2017), pp. 2952-2966
[3]
E.L. Leung, S. Xu. Traditional Chinese medicine in cardiovascular drug discovery. Pharmacol Res, 160 ( 2020), Article 105168
[4]
N. Hu, C. Chen, J. Wang, J. Huang, D. Yao, C. Li. Atorvastatin ester regulates lipid metabolism in hyperlipidemia rats via the PPAR-signaling pathway and HMGCR expression in the liver. Int J Mol Sci, 22 (20) ( 2021), p. 11107. DOI: 10.3390/ijms222011107
[5]
E.A.S. Fhsc. Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet, 398 (10312) ( 2021), pp. 1713-1725
[6]
P.D. Thompson, G. Panza, A. Zaleski, B. Taylor. Statin-associated side effects. J Am Coll Cardiol, 67 (20) ( 2016), pp. 2395-2410
[7]
R. Avan, A. Sahebnasagh, J. Hashemi, M. Monajati, F. Faramarzi, N.C. Henney, et al.. Update on statin treatment in patients with neuropsychiatric disorders. Life, 11 (12) ( 2021), p. 1365. DOI: 10.3390/life11121365
[8]
S. Li, M. Yan, Y. Liu. Research progress on classification and mechanism of efficacy of Chinese medicine for lowering blood lipid. J Liaoning Univ TCM, 23 (5) ( 2021), pp. 166-169 [Chinese].
[9]
X. Li, X. Hu, T. Pan, L. Dong, L. Ding, Z. Wang, et al.. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed Pharmacother, 133 ( 2021), Article 110802
[10]
Y. Bian, X. Li, X. Li, J. Ju, H. Liang, X. Hu, et al.. Daming capsule, a hypolipidaemic drug, lowers blood lipids by activating the AMPK signalling pathway. Biomed Pharmacother, 117 ( 2019), Article 109176
[11]
R. Zhang, H. Niu, N. Wang, L. Sun, Y. Xu, R. Zhao, et al.. Daming capsule restores endothelial dysfunction induced by high-fat diet. BMC Complement Altern Med, 12 (1) ( 2012), p. 21
[12]
Z.L. Su, P.Z. Hang, J. Hu, Y.Y. Zheng, H.Q. Sun, J. Guo, et al.. Aloe-emodin exerts cholesterol-lowering effects by inhibiting proprotein convertase subtilisin/kexin type 9 in hyperlipidemic rats. Acta Pharmacol Sin, 41 (8) ( 2020), pp. 1085-1092. DOI: 10.1038/s41401-020-0392-8
[13]
L.F. He, C. Wang, Y.F. Zhang, C.C. Guo, Y. Wan, Y.X. Li. Effect of emodin on hyperlipidemia and hepatic lipid metabolism in zebrafish larvae fed a high-cholesterol diet. Chem Biodivers, 19 (2) ( 2022), p. e202100675
[14]
J. Xu, H. Liu, G. Su, M. Ding, W. Wang, J. Lu, et al.. Purification of ginseng rare sapogenins 25-OH-PPT and its hypoglycemic, antiinflammatory and lipid-lowering mechanisms. J Ginseng Res, 45 (1) ( 2021), pp. 86-97
[15]
C. Liu, Y.J. Shen, Q.B. Tu, Y.R. Zhao, H. Guo, J. Wang, et al.. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed Pharmacother, 101 ( 2018), pp. 608-616
[16]
H. Xu. Clinical effect of Gynostemma pentaphyllum compound preparation on hyperlipidemia. Chin J of Clinical Rational Drug Use, 8 (21) ( 2015), pp. 145-146. DOI: 10.14801/jkiit.2015.13.3.145
[17]
D. Su, H. Liu, X. Qi, L. Dong, R. Zhang, J. Zhang. Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells. Biosci Biotechnol Biochem, 83 (9) ( 2019), pp. 1747-1755. DOI: 10.1080/09168451.2019.1608807
[18]
P.P. Toth, A.M. Patti, D. Nikolic, R.V. Giglio, G. Castellino, T. Biancucci, et al.. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: a 6 months prospective study. Front Pharmacol , 6 ( 2016), p. 299
[19]
S. Khaerunnisa, N.S. Aminah, A.N. Kristanti, S. Kuswarini, C.D.K. Wungu, S. Soetjipto, et al.. Isolation and identification of a flavonoid compound and in vivo lipid-lowering properties of Imperata cylindrica. Biomed Rep, 13 (5) ( 2020), p. 38
[20]
P.T. Xiao, S.Y. Liu, Y.J. Kuang, Z.M. Jiang, Y. Lin, Z.S. Xie, et al.. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. J Ethnopharmacol, 264 ( 2021), Article 113380
[21]
H.X. Zhang, L. Shen. A review report on the effects of sea-buckthorn flavone oral solution on regulating blood lipids. Hippophae, 01 ( 2002), pp. 25-26
[22]
Y. Wu, F. Wang, L. Fan, W. Zhang, T. Wang, Y. Du, et al.. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p 38 MAPK signaling pathways. Biomed Pharmacother, 97 ( 2018), pp. 1673-1679
[23]
X. Wang, L. Shi, X. Wang, Y. Feng, Y. Wang. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Int J Biol Macromol, 141 ( 2019), pp. 1013-1021
[24]
K. He, Y. Hu, H. Ma, Z. Zou, Y. Xiao, Y. Yang, et al.. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B 6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta, 1862 (9) ( 2016), pp. 1696-1709
[25]
J. Ai, L.M. Zhao, Y.J. Lu, B.Z. Cai, Y. Zhang, B. Yang. A randomized, multicentre, open-label, parallel-group trial to compare the efficacy and safety profile of Daming capsule in patients with hypercholesterolemia. Phytother Res, 23 (7) ( 2009), pp. 1039-1042
[26]
D.Y. Xu, J. Shu, Q.Y. Huang, B. Wasti, C. Chen, L. Liu, et al.. Evaluation of the lipid lowering ability, anti-inflammatory effects and clinical safety of intensive therapy with Zhibitai, a Chinese traditional medicine. Atherosclerosis, 211 (1) ( 2010), pp. 237-241
[27]
F. Liu, M. Prabhakar, J. Ju, H. Long, H.W. Zhou. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr, 71 (1) ( 2017), pp. 9-20. DOI: 10.1038/ejcn.2016.156
[28]
H.Q. Luo, J. Shen, C.P. Chen, X. Ma, C. Lin, Q. Ouyang, et al.. Lipid-lowering effects of oleanolic acid in hyperlipidemic patients. Chin J Nat Med, 16 (5) ( 2018), pp. 339-346
[29]
T.J. Wang, A.S. Lien, J.L. Chen, C.H. Lin, Y.S. Yang, S.H. Yang. A randomized clinical efficacy trial of red yeast rice (Monascus pilosus) against hyperlipidemia. Am J Chin Med, 47 (2) ( 2019), pp. 323-335. DOI: 10.1142/s0192415x19500150
[30]
S.F. Liu, Y.R. Wang, Y.C. Shen, C.L. Chen, C.N. Huang, T.M. Pan, et al.. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. J Food Drug Anal, 26 (1) ( 2018), pp. 393-400. DOI: 10.1016/j.jfda.2017.04.006
[31]
C.Y. Huang, J. Liang, H.Z. Tang. The pharmacological research and clinical application evolving of Panax notoginseng for anti-hyperglycemic and anti-hyperlipidemia. Popular Sci Technol, 18 (05) (2016), pp. 68-71 [Chinese]. DOI: 10.1109/CCSSE.2016.7784355
[32]
W. Jia, Y. Li, J. Wan, X. Cui, J. Lu, J. Liu, et al.. Effects of Xuezhitong in patients with hypertriglyceridemia: a multicentre, randomized, double-blind, double simulation, positive drug and placebo parallel control study. Cardiovasc Drugs Ther, 34 (4) ( 2020), pp. 525-534. DOI: 10.1007/s10557-020-06965-3
[33]
R.A. Defronzo. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 58 (4) ( 2009), pp. 773-795. DOI: 10.2337/db09-9028
[34]
P.K. Oduro, J. Fang, L. Niu, Y. Li, L. Li, X. Zhao, et al.. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and Western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res, 158 ( 2020), Article 104893
[35]
Z. Zhu, Y. Gui, L. Wang, T. Wang, Y. Yang, Y. Niu, et al.. Innovative development path of ethnomedicines: a case study. Front Med, 11 (2) ( 2017), pp. 297-305. DOI: 10.1007/s11684-017-0513-z
[36]
D. Xiao, Y. Hu, Y. Fu, R. Wang, H. Zhang, M. Li, et al.. Emodin improves glucose metabolism by targeting microRNA-20b in insulin-resistant skeletal muscle. Phytomedicine, 59 ( 2019), Article 152758
[37]
S. Guo, Q. Yao, Z. Ke, H. Chen, J. Wu, C. Liu. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol, 412 ( 2015), pp. 85-94
[38]
A. Salminen, M. Lehtonen, T. Suuronen, K. Kaarniranta, J. Huuskonen. Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci, 65 (19) ( 2008), pp. 2979-2999. DOI: 10.1007/s00018-008-8103-5
[39]
H.L. Wen, Z.S. Liang, R. Zhang, K. Yang. Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol, 12 (1) ( 2013), p. 50
[40]
J. Yu. Intervention effect of Ginkgo biloba extract on insulin sensitivity in patients with impaired glucose tolerance. Shanxi J TCM, 02 ( 2002), pp. 48-50 [Chinese].
[41]
G. Fitzl, K. Welt, R. Martin, D. Dettmer, T. Hermsdorf, N. Clemens, et al.. The influence of hypoxia on the myocardium of experimentally diabetic rats with and without protection by Ginkgo biloba extract. I. ultrastructural and biochemical investigations on cardiomyocytes. Exp Toxicol Pathol, 52 (5) ( 2000), pp. 419-430
[42]
K. Welt, G. Fitzl, A. Schepper. Experimental hypoxia of STZ-diabetic rat myocardium and protective effects of Ginkgo biloba extract. II. ultrastructural investigation of microvascular endothelium. Exp Toxicol Pathol, 52 (6) ( 2001), pp. 503-512
[43]
U.B. Mahajan, G. Chandrayan, C.R. Patil, D.S. Arya, K. Suchal, Y.O. Agrawal, et al.. The protective effect of apigenin on myocardial injury in diabetic rats mediating activation of the PPAR-γ pathway. Int J Mol Sci, 18 (4) ( 2017), p. 756. DOI: 10.3390/ijms18040756
[44]
S. Akiyama, S. Katsumata, K. Suzuki, Y. Ishimi, J. Wu, M. Uehara. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr, 46 (1) ( 2010), pp. 87-92
[45]
B. Zhang, Q. Shen, Y. Chen, R. Pan, S. Kuang, G. Liu, et al.. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep, 7 (1) ( 2017), p. 44239
[46]
C.N. Blesso. Dietary anthocyanins and human health. Nutrients, 11 (9) ( 2019), p. 2107. DOI: 10.3390/nu11092107
[47]
E. Daveri, E. Cremonini, A. Mastaloudis, S.N. Hester, S.M. Wood, A.L. Waterhouse, et al.. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol, 18 ( 2018), pp. 16-24
[48]
D.E. Roopchand, P. Kuhn, L.E. Rojo, M.A. Lila, I. Raskin. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol Res, 68 (1) ( 2013), pp. 59-67
[49]
M.C. Morrison, W. Liang, P. Mulder, L. Verschuren, E. Pieterman, K. Toet, et al.. Mirtoselect, an anthocyanin-rich bilberry extract, attenuates non-alcoholic steatohepatitis and associated fibrosis in ApoE(∗)3Leiden mice. J Hepatol, 62 (5) ( 2015), pp. 1180-1186
[50]
A.A. Fallah, E. Sarmast, T. Jafari. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: a systematic review and meta-analysis of randomized clinical trials. Food Res Int, 137 ( 2020), Article 109379
[51]
E. Yue, Y. Yu, X. Wang, B. Liu, Y. Bai, B. Yang. Anthocyanin protects cardiac function and cardiac fibroblasts from high-glucose induced inflammation and myocardial fibrosis by inhibiting IL-17. Front Pharmacol, 11 ( 2021), Article 593633
[52]
S.H. Tiong, C.Y. Looi, A. Arya, W.F. Wong, H. Hazni, M.R. Mustafa, et al.. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia, 102 ( 2015), pp. 182-188
[53]
W. Chang, M. Zhang, J. Li, Z. Meng, S. Wei, H. Du, et al.. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism, 62 (8) ( 2013), pp. 1159-1167
[54]
X. Zhang, Y. Zhao, M. Zhang, X. Pang, J. Xu, C. Kang, et al.. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 7 (8) ( 2012), p. e42529. DOI: 10.1371/journal.pone.0042529
[55]
D. Liu, Y. Zhang, Y. Liu, L. Hou, S. Li, H. Tian, et al.. Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Exp Clin Endocrinol Diabetes, 126 (8) ( 2018), pp. 513-520
[56]
Y. Zhang, X. Li, J. Li, Q. Zhang, X. Chen, X. Liu, et al.. The anti-hyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep, 6 (1) ( 2016), p. 34284
[57]
N. Shen, X. Li, T. Zhou, M.U. Bilal, N. Du, Y. Hu, et al.. Shensong yangxin capsule prevents diabetic myocardial fibrosis by inhibiting TGF-β1/Smad signaling. J Ethnopharmacol, 157 ( 2014), pp. 161-170
[58]
X.L. Tong, S.T. Wu, F.M. Lian, M. Zhao, S.P. Zhou, X.Y. Chen, et al.. The safety and effectiveness of TM81, a Chinese herbal medicine, in the treatment of type 2 diabetes: a randomized double-blind placebo-controlled trial. Diabetes Obes Metab, 15 (5) ( 2013), pp. 448-454. DOI: 10.1111/dom.12051
[59]
L. Ji, X. Tong, H. Wang, H. Tian, H. Zhou, L. Zhang, et al.. Evidence-Based Medical Research of Xiaoke Pill Study Group. Efficacy and safety of traditional Chinese medicine for diabetes: a double-blind, randomised, controlled trial. PLoS One, 8 (2) ( 2013), p. e56703. DOI: 10.1371/journal.pone.0056703
[60]
B. Pang, J. Guo, L. Zhao, X. Zhao, Q. Zhou, X. Tong. Retrospective study of traditional Chinese medicine treatment of type 2 diabetes mellitus. J Tradit Chin Med, 36 (3) ( 2016), pp. 307-313 [Chinese].
[61]
K. Liu, R. Zhou, B. Wang, M.T. Mi. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr, 99 (6) ( 2014), pp. 1510-1519. DOI: 10.3945/ajcn.113.082024
[62]
J. Pan, Y. Xu, S. Chen, Y. Tu, Y. Mo, F. Gao, et al.. The effectiveness of traditional Chinese medicine Jinlida granules on glycemic variability in newly diagnosed type2 diabetes: a double-blinded, randomized trial. J Diabetes Res, 2021 ( 2021), p. 6303063
[63]
F. Lian, G. Li, X. Chen, X. Wang, C. Piao, J. Wang, et al.. Chinese herbal medicine Tianqi reduces progression from impaired glucose tolerance to diabetes: a double-blind, randomized, placebo-controlled, multicenter trial. J Clin Endocrinol Metab, 99 (2) ( 2014), pp. 648-655. DOI: 10.1210/jc.2013-3276
[64]
H.Y. Zhang, J.X. Tian, F.M. Lian, M. Li, W.K. Liu, Z. Zhen, et al.. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed Pharmacother, 133 ( 2021), Article 110857

This work was supported by the National Natural Science Foundation of China (81730012, 81970320, and 82270273) and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-078).

Funding
the National Natural Science Foundation of China(81730012); the National Natural Science Foundation of China(81970320); the National Natural Science Foundation of China(82270273); Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences(CIFMS); Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences(2019-I2M-5-078)
AI Summary AI Mindmap
PDF(2876 KB)

Accesses

Citations

Detail

Sections
Recommended

/