
Organics Recovery from Waste Activated Sludge In-Situ Driving Efficient Nitrogen Removal from Mature Landfill Leachate: An Innovative Biotechnology with Energy Superiority
Fangzhai Zhang, Shang Ren, Haoran Liang, Zhaozhi Wang, Ying Yan, Jiahui Wang, Yongzhen Peng
Engineering ›› 2024, Vol. 34 ›› Issue (3) : 120-132.
Organics Recovery from Waste Activated Sludge In-Situ Driving Efficient Nitrogen Removal from Mature Landfill Leachate: An Innovative Biotechnology with Energy Superiority
・PN/DN-F/DN enabled simultaneous treatment of WAS and mature landfill leachate.
・An average of 19 350.6 mg COD organics were recovered per operational cycle with 95.2% NRE.
・Ultra-fast sludge reduction rate of 4.89 kg/m3·d was obtained with 53.4% sludge reduction.
・PN/DN-F/DN total benefit in equivalent terms of energy was 291.8 kW·h/t TS.
The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention, but there is currently a shortage of reliable technology. This study presents an innovative biotechnology based on free nitrous acid (FNA) to realize sustainable organics recovery from waste activated sludge (WAS) in-situ, driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification, fermentation, and denitrification process (PN/DN-F/DN). First, ammonia ((1708.5 ± 142.9) mg·L−1) in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification (PN/DN) sequencing batch reactor (SBR), with nitrite accumulation ratio of 95.4% ± 2.5%. Then, intermediate effluent (NO2−-N = (1196.9 ± 184. 2) mg·L−1) of the PN/DN-SBR, along with concentrated WAS (volatile solids (VSs) = (15 119.8 ± 2 484.2) mg·L−1), is fed into an anoxic reactor for fermentation coupling denitrification process (F/DN). FNA, the protonated form of nitrite, degrades organics in the WAS to the soluble fraction by the biocidal effect, and the released organics are utilized by denitrifiers to drive NOx− reduction. An ultra-fast sludge reduction rate of 4.89 kg·m−3·d−1 and nitrogen removal rate of 0.46 kg·m−3·d−1 were realized in the process. Finally, F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage. After 175 d operation, an average of 19 350.6 mg chemical oxygen demand organics were recovered per operational cycle, with 95.2% nitrogen removal and 53.4% sludge reduction. PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral, specifically, the total benefit in equivalent terms of energy was 291.8 kW·h·t−1 total solid.
Waste activated sludge / Bioresource recovery / Simultaneous treatment of wastewater and sludge / Mature landfill leachate / Free nitrous acid
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
/
〈 |
|
〉 |