Discovery of Kaempferol, a Novel ADAM10 Inhibitor, as a Potential Treatment for Staphylococcus aureus Infection

Tingting Wang, Jianfeng Wang, Xiangzhu Xu, Fan Jiang, Hongfa Lv, Qinghui Qi, Can Zhang, Qianghua Lv, Xuming Deng

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 206-221.

PDF(6038 KB)
PDF(6038 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 206-221. DOI: 10.1016/j.eng.2023.03.006
Research
Article

Discovery of Kaempferol, a Novel ADAM10 Inhibitor, as a Potential Treatment for Staphylococcus aureus Infection

Author information +
History +

Abstract

Host-directed therapy (HDT) is an emerging novel approach for treating multidrug-resistant Staphylococcus aureus (S. aureus) infection. Functioning as the indispensable specific cellular receptor for α-toxin (Hla), a-disintegrin and metalloproteinase 10 (ADAM10) is exploited to accelerate S. aureus infection through diverse mechanisms. The extraordinary contribution of ADAM10 to S. aureus pathogenesis renders it an attractive HDT target for combating S. aureus infection. Our study is the first to demonstrate the indispensable role of ADAM10 in S. aureus-induced necroptosis, and it enhances our knowledge of the role of ADAM10 in S. aureus infection. Using a fluorogenic substrate assay, we further identified kaempferol as a potent ADAM10 inhibitor that effectively protected mice from S. aureus infection by suppressing Hla-mediated barrier disruption and necroptosis. Collectively, our work presents a novel host-directed therapeutic strategy for using the promising candidate kaempferol to treat S. aureus infection and other diseases relevant to the disordered upregulation of ADAM10.

Graphical abstract

Keywords

Host-directed therapy / Kaempferol / ADAM10 inhibitor / Staphylococcus aureus infection / Barrier disruption / Necroptosis

Cite this article

Download citation ▾
Tingting Wang, Jianfeng Wang, Xiangzhu Xu, Fan Jiang, Hongfa Lv, Qinghui Qi, Can Zhang, Qianghua Lv, Xuming Deng. Discovery of Kaempferol, a Novel ADAM10 Inhibitor, as a Potential Treatment for Staphylococcus aureus Infection. Engineering, 2023, 28(9): 206‒221 https://doi.org/10.1016/j.eng.2023.03.006

References

[1]
A. Schwegmann, F. Brombacher. Host-directed drug targeting of factors hijacked by pathogens. Sci Signal, 1 (29) (2008), p. re8
[2]
D. Huang, J.J. Luo, X. OuYang, L. Song. Subversion of host cell signaling: the arsenal of rickettsial species. Front Cell Infect Mi, 12 (2022), p. 995933
[3]
E.S. Seilie, W.J. Bubeck. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol, 72 (2017), pp. 101-116
[4]
G.A. Wilke, W.J. Bubeck. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA, 107 (30) (2010), pp. 13473-13478. DOI: 10.1073/pnas.1001815107
[5]
S. Virreira Winter, A. Zychlinsky, B.W. Bardoel. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep, 6 (1) (2016), p. 24242
[6]
I. Inoshima, N. Inoshima, G.A. Wilke, M.E. Powers, K.M. Frank, Y. Wang, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med, 17 (10) (2011), pp. 1310-1314. DOI: 10.1038/nm.2451
[7]
M.E. Powers, H.K. Kim, Y. Wang, W.J. Bubeck. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis, 206 (3) (2012), pp. 352-356. DOI: 10.1093/infdis/jis192
[8]
K.A. Becker, B. Fahsel, H. Kemper, J. Mayeres, C. Li, B. Wilker, et al. Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect Immun, 86 (1) (2017), p. e00606-17. DOI: 10.1128/IAI.00606-17
[9]
K. Reiss, P. Saftig. The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol, 20 (2) (2009), pp. 126-137
[10]
T. Isozaki, B.J. Rabquer, J.H. Ruth, G.K. Haines, A.E. Koch. Rheumatism, ADAM-10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum, 65 (1) (2013), pp. 98-108. DOI: 10.1002/art.37755
[11]
P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, G. Kroemer. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 11 (10) (2010), pp. 700-714. DOI: 10.1038/nrm2970
[12]
Z. Cai, A. Zhang, S. Choksi, W. Li, T. Li, X.M. Zhang, et al. Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration. Cell Res, 26 (8) (2016), pp. 886-900. DOI: 10.1038/cr.2016.87
[13]
K. Kitur, D. Parker, P. Nieto, D.S. Ahn, T.S. Cohen, S. Chung, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathog, 11 (4) (2015), p. e1004820. DOI: 10.1371/journal.ppat.1004820
[14]
X. Han, S. Sun, Y. Sun, Q. Song, J. Zhu, N. Song, et al. Small molecule-driven NLRP 3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy, 15 (11) (2019), pp. 1860-1881. DOI: 10.1080/15548627.2019.1596481
[15]
J.I. Odegaard, R.R. Ricardo-Gonzalez, M.H. Goforth, C.R. Morel, V. Subramanian, L. Mukundan, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 447 (7148) (2007), pp. 1116-1120. DOI: 10.1038/nature05894
[16]
I. Pineda-Torra, M. Gage, A. de Juan, O.M. Pello. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol Biol, 1339 (2015), pp. 101-109. DOI: 10.1007/978-1-4939-2929-0_6
[17]
I. Wiegand, K. Hilpert, R.E.W. Hancock. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc, 3 (2) (2008), pp. 163-175. DOI: 10.1038/nprot.2007.521
[18]
L. Münzenmayer, T. Geiger, E. Daiber, B. Schulte, S.E. Autenrieth, M. Fraunholz, et al. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages. Cell Microbiol, 18 (8) (2016), pp. 1172-1183. DOI: 10.1111/cmi.12577
[19]
O. Trott, A.J. Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31 (2) (2010), pp. 455-461. DOI: 10.1002/jcc.21334
[20]
G. Murphy. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol, 20 (2) (2009), pp. 138-145
[21]
J. Fu, M. Zhou, M.A. Gritsenko, E.S. Nakayasu, L. Song, Z.Q. Luo. Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. eLife, 11 (2022), p. 11
[22]
D. Parker, A. Prince. Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9. J Immunol, 189 (8) (2012), pp. 4040-4046. DOI: 10.4049/jimmunol.1201055
[23]
J.C. Leemans, N.P. Juffermans, S. Florquin, N. van Rooijen, M.J. Vervoordeldonk, A. Verbon, et al. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol, 166 (7) (2001), pp. 4604-4611. DOI: 10.4049/jimmunol.166.7.4604
[24]
J. Zuegg, C. Muldoon, G. Adamson, D. McKeveney, G. Le Thanh, R. Premraj, et al. Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nat Commun, 6 (1) (2015), p. 7719
[25]
C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez. Polyphenols: food sources and bioavailability. Am J Clin Nutr, 79 (5) (2004), pp. 727-747. DOI: 10.1093/ajcn/79.5.727
[26]
M. Mullooly, P.M. McGowan, S.A. Kennedy, S.F. Madden, J. Crown, N. O’ Donovan, et al. ADAM10: a new player in breast cancer progression?. Br J Cancer, 113 (6) (2015), pp. 945-951. DOI: 10.1038/bjc.2015.288
[27]
T. Maretzky, K. Reiss, A. Ludwig, J. Buchholz, F. Scholz, E. Proksch, et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci USA, 102 (26) (2005), pp. 9182-9187. DOI: 10.1073/pnas.0500918102
[28]
Y.M. Soe, S. Bedoui, T.P. Stinear, A. Hachani. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol, 23 (5) (2021), p. e13317
[29]
A.L. Samson, Y. Zhang, N.D. Geoghegan, X.J. Gavin, K.A. Davies, M.J. Mlodzianoski, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun, 11 (1) (2020), p. 3151
[30]
M. Yabal, N. Müller, H. Adler, N. Knies, C.J. Groß, R.B. Damgaard, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep, 7 (6) (2014), pp. 1796-1808
[31]
D. Ming, D. Wang, F. Cao, H. Xiang, D. Mu, J. Cao, et al. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front Microbiol, 8 (2017), p. 2263
[32]
W.J. Kaiser, H. Sridharan, C. Huang, P. Mandal, J.W. Upton, P.J. Gough, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem, 288 (43) (2013), pp. 31268-31279
[33]
F.K.M. Chan, N.F. Luz, K. Moriwaki. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol, 33 (1) (2015), pp. 79-106. DOI: 10.1146/annurev-immunol-032414-112248
[34]
R.P. Ramachandran, C. Spiegel, Y. Keren, T. Danieli, N. Melamed-Book, R.R. Pal, et al. Mitochondrial targeting of the enteropathogenic Escherichia coli map triggers calcium mobilization, ADAM10-MAP kinase signaling, and host cell apoptosis. MBio, 11 (5) (2020), p. e01397-20
[35]
A. Ruiz-Garcia, S. Lopez-Lopez, J.J. Garcia-Ramirez, V. Baladron, M.J. Ruiz-Hidalgo, L. Lopez-Sanz, et al. The tetraspanin TSPAN33 controls TLR-triggered macrophage activation through modulation of NOTCH signaling. J Immunol, 197 (8) (2016), pp. 3371-3381. DOI: 10.4049/jimmunol.1600421
[36]
L. Czaplewski, R. Bax, M. Clokie, M. Dawson, H. Fairhead, V.A. Fischetti, et al. Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis, 16 (2) (2016), pp. 239-251
[37]
B.J. Berube, W.J. Bubeck. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5 (6) (2013), pp. 1140-1166. DOI: 10.3390/toxins5061140
[38]
V.C. Tam, R. Suen, P.M. Treuting, A. Armando, R. Lucarelli, N. Gorrochotegui-Escalante, et al. PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proc Natl Acad Sci USA, 117 (27) (2020), pp. 15789-15798. DOI: 10.1073/pnas.2006343117
[39]
E. Reboud, S. Bouillot, S. Patot, B. Béganton, I. Attrée, P. Huber. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog, 13 (8) (2017), p. e1006579. DOI: 10.1371/journal.ppat.1006579
[40]
N. González-Juarbe, R.P. Gilley, C.A. Hinojosa, K.M. Bradley, A. Kamei, G. Gao, et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog, 11 (12) (2015), p. e1005337. DOI: 10.1371/journal.ppat.1005337
[41]
S. Wetzel, L. Seipold, P. Saftig. The metalloproteinase ADAM10: a useful therapeutic target?. Biochim Biophys Acta Mol Cell Res, 1864 (11 11 Pt B) (2017), pp. 2071-2081
[42]
X. Han, S. Zhao, H. Song, T. Xu, Q. Fang, G. Hu, et al. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson’s disease. Redox Biol, 41 (2021), p. 101911
[43]
N. Kim, H.J. Lee. Target enzymes considered for the treatment of Alzheimer’s disease and Parkinson’s disease. BioMed Res Int, 2020 (2020), p. 2010728
AI Summary AI Mindmap
PDF(6038 KB)

Accesses

Citations

Detail

Sections
Recommended

/