Analyzing the Effect of the Intra-Pixel Position of Small PSFs for Optimizing the PL of Optical Subpixel Localization

Haiyang Zhan, Fei Xing, Jingyu Bao, Ting Sun, Zhenzhen Chen, Zheng You, Li Yuan

Engineering ›› 2023, Vol. 27 ›› Issue (8) : 140-149.

PDF(3507 KB)
PDF(3507 KB)
Engineering ›› 2023, Vol. 27 ›› Issue (8) : 140-149. DOI: 10.1016/j.eng.2023.03.009
Research
Article

Analyzing the Effect of the Intra-Pixel Position of Small PSFs for Optimizing the PL of Optical Subpixel Localization

Author information +
History +

Abstract

Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields. With unavoidable imaging noise, there is a precision limit (PL) when estimating the target positions on image sensors, which depends on the detected photon count, noise, point spread function (PSF) radius, and PSF’s intra-pixel position. Previous studies have clearly reported the effects of the first three parameters on the PL but have neglected the intra-pixel position information. Here, we develop a localization PL analysis framework for revealing the effect of the intra-pixel position of small PSFs. To accurately estimate the PL in practical applications, we provide effective PSF (ePSF) modeling approaches and apply the Cramér-Rao lower bound. Based on the characteristics of small PSFs, we first derive simplified equations for finding the best PL and the best intra-pixel region for an arbitrary small PSF; we then verify these equations on real PSFs. Next, we use the typical Gaussian PSF to perform a further analysis and find that the final optimum of the PL is achieved at the pixel boundaries when the Gaussian radius is as small as possible, indicating that the optimum is ultimately limited by light diffraction. Finally, we apply the maximum likelihood method. Its combination with ePSF modeling allows us to successfully reach the PL in experiments, making the above theoretical analysis effective. This work provides a new perspective on combining image sensor position control with PSF engineering to make full use of information theory, thereby paving the way for thoroughly understanding and achieving the final optimum of the PL in optical localization.

Graphical abstract

Keywords

Optical measurement / Subpixel localization / Precision limit optimization / Small point spread functions / Centroiding

Cite this article

Download citation ▾
Haiyang Zhan, Fei Xing, Jingyu Bao, Ting Sun, Zhenzhen Chen, Zheng You, Li Yuan. Analyzing the Effect of the Intra-Pixel Position of Small PSFs for Optimizing the PL of Optical Subpixel Localization. Engineering, 2023, 27(8): 140‒149 https://doi.org/10.1016/j.eng.2023.03.009

References

[1]
A. Yildiz, J.N. Forkey, S.A. McKinney, T. Ha, Y.E. Goldman, P.R. Selvin. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300 (5628) (2003), pp. 2061-2065.
[2]
T. Matsuda, A. Miyawaki, T. Nagai. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat Methods, 5 (4) (2008), pp. 339-345. DOI: 10.1038/nmeth.1193
[3]
C.R. Copeland, J. Geist, C.D. McGray, V.A. Aksyuk, J.A. Liddle, B.R. Ilic, et al. Subnanometer localization accuracy in widefield optical microscopy. Light Sci Appl, 7 (1) (2018), p. 31.
[4]
Y. Wang, J. Lin, Q. Zhang, X. Chen, H. Luan, M. Gu. Fluorescence nanoscopy in neuroscience. Engineering, 16 (2022), pp. 29-38
[5]
P.P. Mathai, J.A. Liddle, S.M. Stavis. Optical tracking of nanoscale particles in microscale environments. Appl Phys Rev, 3 (1) (2016), Article 011105.
[6]
M. Wei, F. Xing, Z. You.A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images. Light Sci Appl, 7 (1) (2018), p. 18006. DOI: 10.1038/lsa.2018.6
[7]
L. Kong, P. Zhou. A light field measurement system through PSF estimation by a morphology-based method. Int J Extrem Manuf, 3 (4) (2021), Article 045201. DOI: 10.1088/2631-7990/ac1455
[8]
Y. Chen, Z. Shu, S. Zhang, P. Zeng, H. Liang, M. Zheng, et al. Sub-10 nm fabrication: methods and applications. Int J Extrem Manuf, 3 (3) (2021), Article 032002
[9]
J. Wang, X. Ji, X. Zhang, Z. Sun, T. Wang. Real-time robust individual X point localization for stereoscopic tracking. Pattern Recogn Lett, 112 (2018), pp. 138-144.
[10]
L.P.D. Silva, M. Auvergne, D. Toublanc, J. Rowe, R. Kuschnig, J. Matthews. Estimation of a super-resolved PSF for the data reduction of undersampled stellar observations—deriving an accurate model for fitting photometry with Corot space telescope. Astron Astrophys, 452 (1) (2006), pp. 363-369. DOI: 10.1590/S0101-81082006000300019
[11]
C.C. Liebe. Accuracy performance of star trackers—a tutorial. IEEE Trans Aerosp Electron Syst, 38 (2) (2002), pp. 587-599.
[12]
R. Genzel, F. Eisenhauer, S. Gillessen. The galactic center massive black hole and nuclear star cluster. Rev Mod Phys, 82 (4) (2010), pp. 3121-3195.
[13]
T. Do, A. Ghez, M. Morris, J. Lu, S. Chappell, A. Feldmeier-Krause, et al. Observational constraints on the formation and evolution of the Milky Way nuclear star cluster with Kect and Gemini. Proc Int Astron Union, 11 (S322) (2016), pp. 222-230.
[14]
S. Du, M. Wang, X. Chen, S. Fang, H. Su. A high-accuracy extraction algorithm of planet centroid image in deep-space autonomous optical navigation. J Navigation, 69 (4) (2016), pp. 828-844.
[15]
S. Zhang, F. Xing, T. Sun, Z. You, M. Wei. Novel approach to improve the attitude update rate of a star tracker. Opt Express, 26 (5) (2018), pp. 5164-5181. DOI: 10.1364/oe.26.005164
[16]
J. Jiang, H. Wang, G. Zhang. High-accuracy synchronous extraction algorithm of star and celestial body features for optical navigation sensor. IEEE Sens J, 18 (2) (2018), pp. 713-723.
[17]
E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313 (5793) (2006), pp. 1642-1645. DOI: 10.1126/science.1127344
[18]
M. Bates, B. Huang, G.T. Dempsey, X. Zhuang. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317 (5845) (2007), pp. 1749-1753. DOI: 10.1126/science.1146598
[19]
S. Manley, J.M. Gillette, G.H. Patterson, H. Shroff, H.F. Hess, E. Betzig, et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods, 5 (2) (2008), pp. 155-157. DOI: 10.1038/nmeth.1176
[20]
A.R. Small, R. Parthasarathy. Superresolution localization methods. Annu Rev Phys Chem, 65 (2014), pp. 107-125. DOI: 10.1146/annurev-physchem-040513-103735
[21]
M. Lelek, M.T. Gyparaki, G. Beliu, F. Schueder, J. Griffie, S. Manley, et al. Single-molecule localization microscopy. Nat Rev Methods Primers, 1 (2021), p. 40
[22]
S. Burov, P. Figliozzi, B. Lin, S.A. Rice, N.F. Scherer, A.R. Dinner. Single-pixel interior filling function approach for detecting and correcting errors in particle tracking. Proc Natl Acad Sci USA, 114 (2) (2016), pp. 221-226
[23]
K.A. Winick. Cramér-Rao lower bounds on the performance of charge-coupled-device optical position estimators. J Opt Soc Am A Opt Image Sci Vis, 3 (11) (1986), pp. 1809-1815.
[24]
H. Chen, C. Rao. Accuracy analysis on centroid estimation algorithm limited by photon noise for point object. Opt Commun, 282 (8) (2009), pp. 1526-1530.
[25]
H. Jia, J. Yang, X. Li. Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise. J Opt Soc Am A Opt Image Sci Vis, 27 (9) (2010), pp. 2038-2045.
[26]
M. Davidson, L. Lindegren.Early PSF/LSF model. Gaia data release 2 documentation. Madrid: European Space Agency (2019)
[27]
K.I. Mortensen, L.S. Churchman, J.A. Spudich, H. Flyvbjerg. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods, 7 (5) (2010), pp. 377-381. DOI: 10.1038/nmeth.1447
[28]
C.S. Smith, N. Joseph, B. Rieger, K.A. Lidke. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods, 7 (5) (2010), pp. 373-375. DOI: 10.1038/nmeth.1449
[29]
F. Huang, T.M.P. Hartwich, F.E. Rivera-Molina, Y. Lin, W.C. Duim, J.J. Long, et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods, 10 (7) (2013), pp. 653-658. DOI: 10.1038/nmeth.2488
[30]
A.A. Abdo, M. Ackermann, M. Ajello, W.B. Atwood, M. Axelsson, L. Baldini, et al. Fermi/large area telescope bright gamma-ray source list. Astrophys J Suppl S, 183 (2009), pp. 44-46
[31]
C. Fabricius,L. Lindegren. Astrometric image parameters determination. Gaia data release 2 documentation. European Space Agency, Madrid (2019)
[32]
R.C. Stone. A comparison of digital centering algorithms. Astron J, 97 (4) (1989), pp. 1227-1237
[33]
X. Wei, J. Xu, J. Li, J. Yan, G. Zhang. S-curve centroiding error correction for star sensor. Acta Astronaut, 99 (2014), pp. 231-241.
[34]
G. Rufino, D. Accardo. Enhancement of the centroiding algorithm for the star tracker measure refinement. Acta Astronaut, 53 (2) (2003), pp. 135-147.
[35]
H. Jia, J. Yang, X. Li, J. Yang, M. Yang, Y. Liu, et al. Systematic error analysis and compensation for high accuracy star centroid estimation of star tracker. Sci China Technol Sci, 53 (2010), pp. 3145-3152. DOI: 10.1007/s11431-010-4129-7
[36]
J. Ares, J. Arines. Influence of thresholding on centroid statistics: full analytical description. Appl Opt, 43 (31) (2004), pp. 5796-5805.
[37]
X. Ma, C. Rao, H. Zheng. Error analysis of CCD-based point source centroid computation under the background light. Opt Express, 17 (10) (2009), pp. 8525-8541
[38]
Y. Zhang, J. Jiang, G. Zhang, Y. Lu. Accurate and robust synchronous extraction algorithm for star centroid and nearby celestial body edge. IEEE Access, 7 (2019), pp. 126742-126752. DOI: 10.1109/access.2019.2939148
[39]
T. Delabie, J.D. Schutter, B. Vandenbussche. An accurate and efficient Gaussian fit centroiding algorithm for star trackers. J Astronaut Sci, 61 (1) (2014), pp. 60-84. DOI: 10.1007/s40295-015-0034-4
[40]
H. Wang, E. Xu, Z. Li, J. Li, T. Qin. Gaussian analytic centroiding method of star image of star tracker. Adv Space Res, 56 (10) (2015), pp. 2196-2205.
[41]
J. Anderson, I.R. King.Toward high-precision astrometry with WFPC2. I. Deriving an accurate point-spread function. Publ Astron Soc Pac, 112 (776) (2000), pp. 1360-1382.
[42]
C. Zhai, M. Shao, R. Goullioud, B. Nemati. Micro-pixel accuracy centroid displacement estimation and detector calibration. Proc R Soc A, 467 (2136) (2011), pp. 3550-3569. DOI: 10.1098/rspa.2011.0255
[43]
European Machine Vision Association. EMVA standard 1288:standard for characterization of image sensors and cameras, release 3.1. Report. Barcelona: European Machine Vision Association (EMVA); 2016.
[44]
T. Sun, F. Xing, X. Wang, Z. You, D. Chu. An accuracy measurement method for star trackers based on direct astronomic observation. Sci Rep, 6 (2016), p. 22593.
[45]
Freeman PL. Image shifting apparatus for enhanced image resolution. United States patent US 7420592 B2. 2008.
AI Summary AI Mindmap
PDF(3507 KB)

Accesses

Citations

Detail

Sections
Recommended

/