Intelligent Intercommunicating Multiscale Engineering: The Engineering of the Future

Yue Yuan, Jesse Zhu

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 13-19.

PDF(829 KB)
PDF(829 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 13-19. DOI: 10.1016/j.eng.2023.03.021
Views & Comments

Intelligent Intercommunicating Multiscale Engineering: The Engineering of the Future

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Yue Yuan, Jesse Zhu. Intelligent Intercommunicating Multiscale Engineering: The Engineering of the Future. Engineering, 2023, 30(11): 13‒19 https://doi.org/10.1016/j.eng.2023.03.021

References

[1]
Brunette ES, Flemmer RC, Flemmer CL. A review of artificial intelligence. In:Proceedings of the 4th International Conference on Autonomous Robots and Agents; 2009 Feb 10-12; Wellington, New Zealand. Piscataway: IEEE; 2009. p. 385-92.
[2]
A.M. Turing. Computing machinery and intelligence. R. Epstein, G. Roberts, G. Beber (Eds.), Parsing the Turing test, Springer, Dordrecht ( 2009), pp. 23-65 DOI: 10.1007/978-1-4020-6710-5_3
[3]
J. Moor. The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag, 27 (4) ( 2006), pp. 87-91
[4]
C.P. Lu. AI, native supercomputing and the revival of Moore’s law. APSIPA Trans Signal Inf Process, 6 (1) ( 2017), Article e9
[5]
Bughin J, Seong J, Manyika J, Chui M, Joshi R. Notes from the AI frontier: modeling the impact of AI on the world economy. Discussion paper. Washington: McKinsey Company; 2018.
[6]
V. Venkatasubramanian. The promise of artificial intelligence in chemical engineering: is it here, finally?. AIChE J, 65 (2) ( 2018), pp. 466-478
[7]
H. Wu, J. Zhao. Deep convolutional neural network model based chemical process fault diagnosis. Comput Chem Eng, 115 ( 2018), pp. 185-197
[8]
S. Zendehboudi, N. Rezaei, A. Lohi. Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review. Appl Energy, 228 ( 2018), pp. 2539-2566
[9]
Y. Yuan, X. Dong, L. Ricardez-Sandoval. Insights into syngas combustion on a defective NiO surface for chemical looping combustion: oxygen migration and vacancy effects. J Phys Chem C, 124 (52) ( 2020), pp. 28359-28370 DOI: 10.1021/acs.jpcc.0c07144
[10]
Y. Yuan, X. Dong, L. Ricardez-Sandoval. A multi-scale model for syngas combustion on NiO oxygen carrier for chemical looping combustion: the role of nearest neighbors. Fuel Process Technol, 229 ( 2022), Article 107172
[11]
V. Safari, G. Arzpeyma, F. Rashchi, N. Mostoufi. A shrinking particle—shrinking core model for leaching of a zinc ore containing silica. Int J Miner Process, 93 (1) ( 2009), pp. 79-83
[12]
A. Nikolopoulos, C. Samlis, M. Zeneli, N. Nikolopoulos, S. Karellas, P. Grammelis. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles. Chem Eng Sci, 229 ( 2021), Article 116013
[13]
Z. Yang, B. Lu, W. Wang. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds. Chem Eng Sci, 246 ( 2021), Article 117003
[14]
C.J. Bartel, S.L. Millican, A.M. Deml, J.R. Rumptz, W. Tumas, A.W. Weimer, et al.. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat Commun, 9 ( 2018), Article 4168
[15]
T. Xie, J.C. Grossman. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett, 120 (14) ( 2018), Article 145301
[16]
L.T. Roling, T.S. Choksi, F. Abild-Pedersen. A coordination-based model for transition metal alloy nanoparticles. Nanoscale, 11 (10) ( 2019), pp. 4438-4452 DOI: 10.1039/c9nr00959k
[17]
K. Saravanan, J.R. Kitchin, O.A. von Lilienfeld, J.A. Keith. Alchemical predictions for computational catalysis: potential and limitations. J Phys Chem Lett, 8 (20) ( 2017), pp. 5002-5007 DOI: 10.1021/acs.jpclett.7b01974
[18]
X. Ma, Z. Li, L.E. Achenie, H. Xin. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J Phys Chem Lett, 6 (18) ( 2015), pp. 3528-3533 DOI: 10.1021/acs.jpclett.5b01660
[19]
Z. Li, S. Wang, W.S. Chin, L.E. Achenie, H. Xin. High-throughput screening of bimetallic catalysts enabled by machine learning. J Mater Chem, 5 (46) ( 2017), pp. 24131-24138
[20]
J.H. Montoya, K.A. Persson. A high-throughput framework for determining adsorption energies on solid surfaces. npj Comput Mater, 3 ( 2017), Article 14
[21]
M. Misawa, S. Fukushima, A. Koura, K. Shimamura, F. Shimojo, S. Tiwari, et al.. Application of first-principles-based artificial neural network potentials to multiscale-shock dynamics simulations on solid materials. J Phys Chem Lett, 11 (11) ( 2020), pp. 4536-4541 DOI: 10.1021/acs.jpclett.0c00637
[22]
K. Shimamura, S. Fukushima, A. Koura, F. Shimojo, M. Misawa, R.K. Kalia, et al.. Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag2Se. J Chem Phys, 151 (12) ( 2019), Article 124303
[23]
Y.B. Liu, J.Y. Yang, G.M. Xin, L.H. Liu, G. Csanyi, B.Y. Cao. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga2O3. J Chem Phys, 153 (14) ( 2020), Article 144501
[24]
D.S. Sholl, J.A. Steckel. Density functional theory: a practical introduction. John Wiley & Sons, Inc., Hoboken ( 2009)
[25]
Z.W. Ulissi, A.J. Medford, T. Bligaard, J.K. Norskov. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun, 8 (1) ( 2017), Article 14621
[26]
A.A. Peterson. Acceleration of saddle-point searches with machine learning. J Chem Phys, 145 (7) ( 2016), Article 074106
[27]
Y. Jiang, J. Kolehmainen, Y. Gu, Y.G. Kevrekidis, A. Ozel, S. Sundaresan. Neural-network-based filtered drag model for gas-particle flows. Powder Technol, 346 ( 2019), pp. 403-413
[28]
Y. Zhang, M. Jiang, X. Chen, Y. Yu, Q. Zhou. Modeling of the filtered drag force in gas-solid flows via a deep learning approach. Chem Eng Sci, 225 ( 2020), Article 115835
[29]
Y. Jiang, X. Chen, J. Kolehmainen, I.G. Kevrekidis, A. Ozel, S. Sundaresan. Development of data-driven filtered drag model for industrial-scale fluidized beds. Chem Eng Sci, 230 ( 2021), Article 116235
[30]
H. Zhou, Y.C. Soh, X. Wu. Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control. Appl Therm Eng, 76 ( 2015), pp. 98-104
[31]
Ziaei D, Hekmati Athar SP, Goudarzi N. Assessment of a CFD-based machine learning approach on turbulent flow approximation. In: Proceedings of the ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference; 2019 Jul 14-17; Bellevue, WA, USA. New York City: American Society of Mechanical Engineers. 2019. p. ES 2019-3925.
[32]
J. Sansana, M.N. Joswiak, I. Castillo, Z. Wang, R. Rendall, L.H. Chiang, et al.. Recent trends on hybrid modeling for Industry 4.0. Comput Chem Eng, 151 ( 2021), Article 107365
[33]
G. Pang, L. Lu, G.E. Karniadakis. fPINNs: fractional physics-informed neural networks. SIAM J Sci Comput, 41 (4) ( 2019), pp. A2603-A2626 DOI: 10.1137/18m1229845
[34]
L. Yang, D. Zhang, G.E. Karniadakis. Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput, 42 (1) ( 2020), pp. A292-A317 DOI: 10.1137/18m1225409
[35]
M. Raissi, P. Perdikaris, G.E. Karniadakis. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys, 378 ( 2019), pp. 686-707
[36]
N. Sharma, Y. Liu. A hybrid science-guided machine learning approach for modeling chemical processes: a review. AIChE J, 68 (5) ( 2022), Article e17609
[37]
L. Rajulapati, S. Chinta, B. Shyamala, R. Rengaswamy. Integration of machine learning and first principles models. AIChE J, 68 (6) ( 2022), Article e17715
[38]
S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica, 37 ( 2022), pp. 1727-1738
[39]
K. Guan, Y. Gao, Q. Zeng, X. Luan, Y. Zhang, L. Cheng, et al.. Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane. Chin J Chem Eng, 28 (6) ( 2020), pp. 1733-1743
[40]
X. Lu, J. Deng, Y. Xiao, X. Zhai, C. Wang, X. Yi. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel, 308 ( 2022), Article 121234
[41]
Z. Niu, V.J. Pinfield, B. Wu, H. Wang, K. Jiao, D.Y.C. Leung, et al.. Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design. Energ Environ Sci, 14 (5) ( 2021), pp. 2549-2576 DOI: 10.1039/d1ee00398d
[42]
D. Chaffart, L.A. Ricardez-Sandoval. Optimization and control of a thin film growth process: a hybrid first principles/artificial neural network based multiscale modelling approach. Comput Chem Eng, 119 ( 2018), pp. 465-479
[43]
G. Kimaev, L.A. Ricardez-Sandoval. Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks. Chem Eng Sci, 207 ( 2019), pp. 1230-1245
[44]
G. Kimaev, L.A. Ricardez-Sandoval. Artificial neural network discrimination for parameter estimation and optimal product design of thin films manufactured by chemical vapor deposition. J Phys Chem C, 124 (34) ( 2020), pp. 18615-18627 DOI: 10.1021/acs.jpcc.0c05250
[45]
D.C. Psichogios, L.H. Ungar. A hybrid neural network-first principles approach to process modeling. AIChE J, 38 (10) ( 1992), pp. 1499-1511
[46]
D.J. Musliner, J.A. Hendler, A.K. Agrawala, E.H. Durfee, J.K. Strosnider, C. Paul. The challenges of real-time AI. Computer, 28 (1) ( 1995), pp. 58-66

The Department of Science and Technology of Zhejiang Province is acknowledged for this research under its Provincial Key Laboratory Programme (2020E10018).

AI Summary AI Mindmap
PDF(829 KB)

Accesses

Citations

Detail

Sections
Recommended

/