Ultrahigh Pressure Generation at High Temperatures in a Walker-Type Large-Volume Press and Multiple Applications

Xuyuan Hou, Yuchen Shang, Luyao Chen, Bingtao Feng, Yuanlong Zhao, Xinyu Zhao, Kuo Hu, Qiang Tao, Pinwen Zhu, Zhihui Li, Ran Liu, Zhaodong Liu, Mingguang Yao, Bingbing Liu

Engineering ›› 2025, Vol. 45 ›› Issue (2) : 155-164.

PDF(2900 KB)
PDF(2900 KB)
Engineering ›› 2025, Vol. 45 ›› Issue (2) : 155-164. DOI: 10.1016/j.eng.2023.03.023
Research
Article

Ultrahigh Pressure Generation at High Temperatures in a Walker-Type Large-Volume Press and Multiple Applications

Author information +
History +

Abstract

Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes. In this study, we successfully generated pressures of 37.3–40.4 GPa at 1900–2100 K in a Walker-type large-volume press (LVP). Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide (WC) anvils with tapered surfaces and using cell assemblies with an ∼1 mm3 sample volume and hard materials, as well as by applying certain adjustments to the apparatus. The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied. Using the above-mentioned techniques, we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon, core–shell nanocrystals with high Néel temperatures, as well as large-sized single crystals of lower-mantle minerals. The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.

Graphical abstract

Keywords

Ultrahigh pressure / High temperature / Large-volume press / Tungsten carbide anvil / Novel materials

Cite this article

Download citation ▾
Xuyuan Hou, Yuchen Shang, Luyao Chen, Bingtao Feng, Yuanlong Zhao, Xinyu Zhao, Kuo Hu, Qiang Tao, Pinwen Zhu, Zhihui Li, Ran Liu, Zhaodong Liu, Mingguang Yao, Bingbing Liu. Ultrahigh Pressure Generation at High Temperatures in a Walker-Type Large-Volume Press and Multiple Applications. Engineering, 2025, 45(2): 155‒164 https://doi.org/10.1016/j.eng.2023.03.023

References

[1]
Hall HT.High pressure methods. In: Proceedings of an International Symposium on High Temperature Technology; 1959 Oct 6–9; Asilomar, CA, USA. New York City: McGraw-Hill; 1960. p. 145–56.
[2]
Liebermann RC.Multi-anvil, high pressure apparatus: a half-century of development and progress.High Press Res 2011; 31(4):493-532.
[3]
Bundy FP, Hall HT, Strong HM, Wentorfjun RH.Man-made diamonds.Nature 1955; 176(4471):51-55.
[4]
Kawai N.A static high pressure apparatus with tapering multi-pistons forming a sphere.I. Proc Jpn Acad 1966; 42(4):385-388.
[5]
Kawai N, Endo S.The generation of ultrahigh hydrostatic pressures by a split sphere apparatus.Rev Sci Instrum 1970; 41(8):1178-1181.
[6]
Shatskiy A, Katsura T, Litasov KD, Shcherbakova AV, Borzdov YM, Yamazaki D, et al.High pressure generation using scaled-up Kawai-cell.Phys Earth Planet Inter 2011; 189(1–2):92-108.
[7]
Tao Q, Wei X, Lian M, Wang H, Wang X, Dong S, et al.Nanotwinned diamond synthesized from multicore carbon onion.Carbon 2017; 120:405-410.
[8]
Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, et al.Nanotwinned diamond with unprecedented hardness and stability.Nature 2014; 510(7504):250-253.
[9]
Liu G, Kou Z, Yan X, Lei L, Peng F, Wang Q, et al.Submicron cubic boron nitride as hard as diamond.Appl Phys Lett 2015; 106(12):121901.
[10]
Li Q, Zhan G, Li D, He D, Moellendick TE, Gooneratne CP, et al.Ultrastrong catalyst-free polycrystalline diamond.Sci Rep 2020; 10(1):22020.
[11]
Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H.Ultrahard polycrystalline diamond from graphite.Nature 2003; 421(6923):599-600.
[12]
Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A.Aggregated diamond nanorods, the densest and least compressible form of carbon.Appl Phys Lett 2005; 87(8):083106.
[13]
Chang YY, Jacobsen SD, Kimura M, Irifune T, Ohno I.Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods.Phys Earth Planet Inter 2014; 228:47-55.
[14]
Tange Y, Kuwayama Y, Irifune T, Funakoshi K, Ohishi Y.P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: a comprehensive reference for mineralogy of the lower mantle. J Geophys Res, 117 (B6) (2012), p. B06201
[15]
Ito E, Yamazaki D, Yoshino T, Shan S, Guo X, Tsujimo N, et al.High pressure study of transition metal monoxides MnO and CoO: structure and electrical resistance.Phys Earth Planet Inter 2014; 228:170-175.
[16]
Yuan B, Tao Q, Zhao X, Cao K, Cui T, Wang X, et al.In situ measurement of electrical resistivity and Seebeck coefficient simultaneously at high temperature and high pressure.Rev Sci Instrum 2014; 85(1):013904.
[17]
Irifune T, Adachi Y, Fujino K, Ohtani E, Yoneda A, Sawamoto H.A performance test for WC anvils for multianvil apparatus and phase transformations in some aluminous minerals up to 28 GPa.Y. Syono, M.H. Manghnani (Eds.), High-pressure research: application to Earth and planetary sciences, Terra Scientific Publishing Company, Tokyo 1992; 43-50.
[18]
Osugi J, Shimizu K, Inoue K, Yasunami K.A compact cubic anvil high pressure apparatus.Rev Phys Chem Jpn 1964; 34(1):1-6.
[19]
Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, et al.Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils.Rev Sci Instrum 2016; 87(2):024501.
[20]
Ishii T, Miyajima N, Criniti G, Hu Q, Glazyrin K, Katsura T.High pressure–temperature phase relations of basaltic crust up to mid-mantle conditions.Earth Planet Sci Lett 2022; 584:117472.
[21]
Ishii T, Liu Z, Katsura T.A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils.Engineering 2019; 5(3):434-440.
[22]
Walker D.Lubrication, gasketing, and precision in multianvil experiments.Am Mineral 1991; 76(7–8):1092-1100.
[23]
Walker D, Carpenter MA, Hitch CM.Some simplifications to multianvil devices for high pressure experiments.Am Mineral 1990; 75(9–10):1020-1028.
[24]
Huppertz H.Multianvil high-pressure/high-temperature synthesis in solid state chemistry.Z Krist Cryst Mater 2004; 219(6):330-338.
[25]
Shang Y, Shen F, Hou X, Chen LY, Hu K, Li X, et al.Pressure generation above 35 GPa in a Walker-type large-volume press.Chin Phys Lett 2020; 37(8):080701.
[26]
Wada K, Yagi T, Gotou H, Iizuka R, Kawakami M, Kitamura K, et al.Development of new WC–Ni hardmetals for use in high pressure experiments.High Press Res 2015; 35(3):263-272.
[27]
Ishii T, Yamazaki D, Tsujino N, Xu F, Liu Z, Kawazoe T, et al.Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils.High Press Res 2017; 37(4):507-515.
[28]
Ito E.The absence of oxide mixture in high-pressure phases of Mg–silicates.Geophys Res Lett 1977; 4(2):72-74.
[29]
Frost DJ, Poe BT, Tr RGønnes, Liebske C, Duba A, Rubie DC.A new large-volume multianvil system.Phys Earth Planet Inter, 143–144 2004; 507-514.
[30]
Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedrich T, Petuskey WB, et al.Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies).Am Mineral 2012; 97(2–3):353-368.
[31]
Soga N, Anderson OL.High-temperature elastic properties of polycrystalline MgO and Al2O3.J Am Ceram Soc 1966; 49(7):355-359.
[32]
Ito E.Theory and practice—multianvil cells and high-pressure experimental methods.G.D. Price (Ed.), Treatise on geophysics, volume 2: mineral physics, Elsevier B.V., Amsterdam 2007; 197-230.
[33]
Onodera A, Ohtani A.Fixed points for pressure calibration above 100 kbars related to semiconductor–metal transitions.J Appl Phys 1980; 51(5):2581-2585.
[34]
Dunn KJ, Bundy FP.Materials and techniques for pressure calibration by resistance-jump transitions up to 500 kilobars.Rev Sci Instrum 1978; 49(3):365-370.
[35]
Ovsyannikov SV, Shchennikov VV.Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure.Solid State Commun 2004; 132(5):333-336.
[36]
Ohtani A, Motobayashi M, Onodera A.Polymorphism of ZnTe at elevated pressure.Phys Lett A 1980; 75(5):435-437.
[37]
Tange Y, Takahashi E, Funakoshi KI.In situ observation of pressure-induced electrical resistance changes in zirconium: pressure calibration points for the large volume press at 8 and 35 GPa.High Press Res 2011; 31(3):413-418.
[38]
Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T.Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K.Phys Earth Planet Inter 2016; 257:18-27.
[39]
Liu Z, Ishii T, Katsura T.Rapid decrease of MgAlO2.5 component in bridgmanite with pressure.Geochem Perspect Lett 2017; 5:12-18.
[40]
R. Miletich (Ed.), Mineral behaviour at extreme conditions, Eötvös University Press, Budapest (2005)
[41]
Irifune T, Isobe F, Shinmei T.A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond.Phys Earth Planet Inter 2014; 228:255-261.
[42]
Sundqvist B.Carbon under pressure.Phys Rep 2021; 909:1-73.
[43]
Goncharov AF.Graphite at high pressures: amorphization at 44 GPa.High Press Res 1992; 8(4):607-616.
[44]
Patterson JR, Catledge SA, Vohra YK, Akella J, Weir ST.Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils.Phys Rev Lett 2000; 85(25):5364-5367.
[45]
Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin SV, et al.Long-range ordered carbon clusters: a crystalline material with amorphous building blocks.Science 2012; 337(6096):825-828.
[46]
Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, et al.Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods.Phys Rev Lett 2017; 118(24):245701.
[47]
Shang Y, Liu Z, Dong J, Yao M, Yang Z, Li Q, et al.Ultrahard bulk amorphous carbon from collapsed fullerene.Nature 2021; 599(7886):599-604.
[48]
Harris PJF.Fullerene-related structure of commercial glassy carbons.Philos Mag 2004; 84(29):3159-3167.
[49]
Hu M, He J, Zhao Z, Strobel TA, Hu W, Yu D, et al.Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network.Sci Adv 2017; 3(6):e1603213.
[50]
Zhao Y, He DW, Daemen LL, Shen TD, Schwarz RB, Zhu Y, et al.Superhard B–C–N materials synthesized in nanostructured bulks.J Mater Res 2002; 17(12):3139-3145.
[51]
Solozhenko VL, Dub SN, Novikov NV.Mechanical properties of cubic BC2N, a new superhard phase.Diamond Relat Mater 2001; 10(12):2228-2231.
[52]
Li Q, Wang H, Tian Y, Xia Y, Cui T, He J, et al.Superhard and superconducting structures of BC5.J Appl Phys 2010; 108(2):023507.
[53]
Zinin PV, Ming LC, Ishii HA, Jia R, Acosta T, Hellebrand E.Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase.J Appl Phys 2012; 111(11):114905.
[54]
Solozhenko VL, Kurakevych OO, Andrault D, Le Godec Y, Mezouar M.Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5.Phys Rev Lett 2009; 102(1):015506.
[55]
Dubrovinskaia N, Eska G, Sheshin GA, Braun H.Superconductivity in polycrystalline boron-doped diamond synthesized at 20 GPa and 2700 K.J Appl Phys 2006; 99(3):033903.
[56]
Xie L, Yoneda A, Yoshino T, Yamazaki D, Tsujino N, Higo Y, et al.Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus.Rev Sci Instrum 2017; 88(9):093904.
[57]
Bykov M, Chariton S, Fei H, Fedotenko T, Aprilis G, Ponomareva AV, et al.High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N2) stable at ambient conditions.Nat Commun 2019; 10(1):2994.
[58]
Wang Y, Liu H, Wu M, Wang K, Sui Y, Liu Z, et al.New-phase retention in colloidal core/shell nanocrystals via pressure-modulated phase engineering.Chem Sci 2021; 12(19):6580-6587.
[59]
Shimojo F, Kodiyalam S, Ebbsjö I, Kalia RK, Nakano A, Vashishta P.Atomistic mechanisms for wurtzite-to-rocksalt structural transformation in cadmium selenide under pressure.Phys Rev B 2004; 70(18):184111.
[60]
Grünwald M, Rabani E, Dellago C.Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals.Phys Rev Lett 2006; 96(25):255701.
[61]
Liu Z, Fei H, Chen L, McCammon C, Wang L, Liu R, et al.Bridgmanite is nearly dry at the top of the lower mantle.Earth Planet Sci Lett 2021; 570:117088.
[62]
Fukao Y, Obayashi M.Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity.J Geophys Res 2013; 118(11):5920-5938.
AI Summary AI Mindmap
PDF(2900 KB)

Accesses

Citations

Detail

Sections
Recommended

/