Synthesized All-Pass Waveguide for Ultrafast Electronics

Desong Wang, Ke Wu

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 49-54.

PDF(1934 KB)
PDF(1934 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 49-54. DOI: 10.1016/j.eng.2023.04.005
Research
Article

Synthesized All-Pass Waveguide for Ultrafast Electronics

Author information +
History +

Abstract

Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale. This requires a transmission line or waveguide that exhibits an all-pass frequency behavior for the transmitted ultrashort pulse signals. However, this type of waveguiding structure has not yet been practically developed; groundbreaking innovations and advances in signal transmission technology are urgently required to address this scenario. Herein, we present a synthesized all-pass waveguide that demonstrates record guided-wave controlling capabilities, including eigenmode reshaping, polarization rotation, loss reduction, and dispersion improvement. We experimentally developed two waveguides for use in ultrabroad frequency ranges (direct current (DC)-to-millimeter-wave and DC-to-terahertz). Our results suggest that the waveguides can efficiently transmit picosecond electrical pulses while maintaining signal integrity. This waveguide technology is an important breakthrough in the evolution of ultrafast electronics, providing a path towards frequency-engineered ultrashort pulses for low-loss and low-dispersion transmissions.

Graphical abstract

Keywords

All-pass waveguide / Ultrashort pulse / Picosecond transmission / Ultrafast electronics / Terahertz technology / Mode-selective transmission line

Cite this article

Download citation ▾
Desong Wang, Ke Wu. Synthesized All-Pass Waveguide for Ultrafast Electronics. Engineering, 2023, 30(11): 49‒54 https://doi.org/10.1016/j.eng.2023.04.005

References

[1]
N. Li, B. Zhang, Y. He, Y. Luo. Sub-picosecond nanodiodes for low-power ultrafast electronics. Adv Mater, 33 (33) ( 2021), Article 2100874
[2]
M.S. Nikoo, A. Jafari, N. Perera, M. Zhu, G. Santoruvo, E. Matioli. Nanoplasma-enabled picosecond switches for ultrafast electronics. Nature, 579 (7800) ( 2020), pp. 534-539
[3]
Y. Yang, R.B. Wilson, J. Gorchon, C.H. Lambert, S. Salahuddin, J. Bokor. Ultrafast magnetization reversal by picosecond electrical pulses. Sci Adv, 3 (11) ( 2017), Article e1603117
[4]
B. Ferguson, X.C. Zhang. Materials for terahertz science and technology. Nat Mater, 1 ( 2002), pp. 26-33
[5]
T.L. Cocker, D. Peller, P. Yu, J. Repp, R. Huber. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539 (7628) ( 2016), pp. 263-267 DOI: 10.1038/nature19816
[6]
M. Kahrs. 50 years of RF and microwave sampling. IEEE Trans Microw Theory Tech, 51 (6) ( 2003), pp. 1787-1805
[7]
S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, et al.. Wireless sub-THz communication system with high data rate. Nat Photon, 7 (12) ( 2013), pp. 977-981 DOI: 10.1038/nphoton.2013.275
[8]
P.H. Siegel. Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech, 52 (10) ( 2004), pp. 2438-2447
[9]
K. Jhuria, J. Hohlfeld, A. Pattabi, E. Martin, A.Y.A. Córdova, X. Shi, et al.. Spin-orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat Electron, 3 (11) ( 2020), pp. 680-686 DOI: 10.1038/s41928-020-00488-3
[10]
T.J. Spencer, T. Osborn, P.A. Kohl. High-frequency chip connections. Science, 320 (5877) ( 2008), pp. 756-757 DOI: 10.1126/science.1157129
[11]
T.Y. Hsiang, J.F. Whitaker, R. Sobolewski, D.R. Dykaar, G.A. Mourou. Propagation characteristics of picosecond electrical transients on coplanar striplines. Appl Phys Lett, 51 (19) ( 1987), pp. 1551-1553
[12]
X. Yu, M. Sugeta, Y. Yamagami, M. Fujita, T. Nagatsuma. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl Phys Express, 12 (1) ( 2019), Article 012005 DOI: 10.7567/1882-0786/aaf4b3
[13]
F. Fesharaki, T. Djerafi, M. Chaker, K. Wu. Low-loss and low-dispersion transmission line over DC-to-THz spectrum. IEEE Trans Terahertz Sci Technol, 6 (4) ( 2016), pp. 611-618
[14]
R.W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt Lett, 24 (20) ( 1999), pp. 1431-1433
[15]
J. Zhang, S. Alexandrou, T.Y. Hsiang. Attenuation characteristics of coplanar waveguides at subterahertz frequencies. IEEE Trans Microw Theory Tech, 53 (11) ( 2005), pp. 3281-3287
[16]
H. Roskos, M.C. Nuss, K.W. Goossen, D.W. Kisker. Propagation of picosecond electrical pulses on a silicon-based microstrip line with buried cobalt silicide ground plane. Appl Phys Lett, 58 (23) ( 1991), pp. 2604-2606
[17]
H. Hattermann, D. Bothner, L.Y. Ley, B. Ferdinand, D. Wiedmaier, L. Sárkány, et al.. Coupling ultracold atoms to a superconducting coplanar waveguide resonator. Nat Commun, 8 ( 2017), p. 2254
[18]
M.H. Burchett, S.R. Pennock, P.R. Shepherd. A rigorous analysis of uniform stripline of arbitrary dimensions. IEEE Trans Microw Theory Tech, 41 (12) ( 1993), pp. 2074-2080
[19]
C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, F. Manshadi. Communication at millimetre-submillimetre wavelengths using a ceramic ribbon. Nature, 404 (6778) ( 2000), pp. 584-588
[20]
P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.S. Rouifed, S. Cecchi, et al.. Integrated germanium optical interconnects on silicon substrates. Nat Photon, 8 (6) ( 2014), pp. 482-488 DOI: 10.1038/nphoton.2014.73
[21]
K. Wu, Y.J. Cheng, T. Djerafi, W. Hong. Substrate-integrated millimeter-wave and terahertz antenna technology. Proc IEEE, 100 (7) ( 2012), pp. 2219-2232
[22]
Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, N. Engheta. Substrate-integrated photonic doping for near-zero-index devices. Nat Commun, 10 ( 2019), p. 4132
[23]
K. Wang, D. Mittleman. Metal wires for terahertz wave guiding. Nature, 432 (7015) ( 2004), pp. 376-379 DOI: 10.1038/nature03040
[24]
Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, et al.. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat Photon, 12 (9) ( 2018), pp. 554-559 DOI: 10.1038/s41566-018-0238-9
[25]
F. Lemoult, N. Kaina, M. Fink, G. Lerosey. Wave propagation control at the deep subwavelength scale in metamaterials. Nat Phys, 9 ( 2013), pp. 55-60 DOI: 10.1038/nphys2480
[26]
D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink. Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells. Phys Rev Lett, 59 (9) ( 1987), pp. 1018-1021
[27]
M.Y. Frankel, S. Gupta, J.A. Valdmanis, G.A. Mourou. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Trans Microw Theory Tech, 39 (6) ( 1991), pp. 910-916
[28]
Q. Hu, R.P. Joshi. Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse. Phys Rev E, 79 ( 2009), Article 011901 DOI: 10.1103/PhysRevE.79.011901
[29]
I. Liberal, A.M. Mahmoud, N. Engheta. Geometry-invariant resonant cavities. Nat Commun, 7 ( 2016), p. 10989
[30]
Wang D, Fesharaki F, Wu K. Physical evidence of mode conversion along mode-selective transmission line. In:Proceedings of 2017 IEEE MTT-S International Microwave Symposium (IMS); 2017 Jun 4-9; Honololu, HI, USA; 2017.
[31]
Wang D, Wu K. Propagation characteristics of mode-selective transmission line. In:Proceedings of 2018 IEEE MTT-S International Microwave Symposium (IMS); 2018 Jun 10-15; Philadelphia, PA, USA; 2018.
[32]
R. Mittra, A. Nasri, R.K. Arya. Wide-angle scanning antennas for millimeter-wave 5G applications. Engineering, 11 ( 2022), pp. 60-71
[33]
S. Venkatesh, X. Lu, B. Tang, K. Sengupta. Secure space-time-modulated millimetre-wave wireless links that are resilient to distributed eavesdropper attacks. Nat Electron, 4 (11) ( 2021), pp. 827-836
[34]
M. Tonouchi. Cutting-edge terahertz technology. Nat Photon, 1 (2) ( 2007), pp. 97-105 DOI: 10.1038/nphoton.2007.3
[35]
Y. Huang, Y. Shen, J. Wang. From terahertz imaging to terahertz wireless communications. Engineering, 22 ( 2023), pp. 106-124
[36]
D. Wang, F. Fesharaki, K. Wu. Longitudinally uniform transmission lines with frequency-enabled mode conversion. IEEE Access, 6 ( 2018), pp. 24089-24109 DOI: 10.1109/access.2018.2830352
[37]
D. Wang, K. Wu. Mode-selective transmission line—part I: theoretical foundation and physical mechanism. IEEE Trans Compon Packag Manuf Technol, 10 (12) ( 2020), pp. 2072-2086 DOI: 10.1109/tcpmt.2020.3037328
[38]
S.G. Johnson, P. Bienstman, M.A. Skorobogatiy, M. Ibanescu, E. Lidorikis, J.D. Joannopoulos. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Phys Rev E, 66 (6) ( 2002), Article 066608
[39]
D. Wang, K. Wu. Mode-selective transmission line—part II: excitation scheme and experimental verification. IEEE Trans Compon Packag Manuf Technol, 11 (2) ( 2021), pp. 260-272 DOI: 10.1109/tcpmt.2020.3043633
[40]
K. Sengupta, T. Nagatsuma, D.M. Mittleman. Terahertz integrated electronic and hybrid electronic-photonic systems. Nat Electron, 1 (12) ( 2018), pp. 622-635 DOI: 10.1038/s41928-018-0173-2
[41]
H. Tataria, M. Shafi, A.F. Molisch, M. Dohler, H. Sjöland, F. Tufvesson. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc IEEE, 109 (7) ( 2021), pp. 1166-1199 DOI: 10.1109/jproc.2021.3061701
[42]
Y. Lyu, Y. Zhang, Y. Liu, W. Chen, X. Zhang, W. Xu, et al.. Analysis of potential disruptive technologies in the electronics and information field towards the intelligent society. Engineering, 7 (8) ( 2021), pp. 1051-1056

We thank David Dousset for helping with the measurements at the terahertz probe station and Louis-Philippe Carignan for capturing the scanning electron microscope images. We are grateful to the technical staff of the Poly-Grames Research Center at Polytechnique Montreal for the circuit fabrication. We thank Sarah Wu Martinez for language editing. Desong Wang acknowledges discussions with Ben You, Muhibur Rahman, and Louis-Philippe Carignan. This study was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and in part by the NSERC-Huawei Industrial Research Chair Program.

AI Summary AI Mindmap
PDF(1934 KB)

Accesses

Citations

Detail

Sections
Recommended

/