Biosynthesis and Immunological Evaluation of a Dual-Antigen Nanoconjugate Vaccine Against Brucella melitensis

Jing Huang, Yufei Wang, Kangfeng Wang, Shulei Li, Peng Sun, Yan Guo, Jiankai Liu, Ruifu Yang, Ming Zeng, Chao Pan, Hengliang Wang, Li Zhu

Engineering ›› 2023, Vol. 29 ›› Issue (10) : 95-109.

PDF(4347 KB)
PDF(4347 KB)
Engineering ›› 2023, Vol. 29 ›› Issue (10) : 95-109. DOI: 10.1016/j.eng.2023.04.007
Research
Article

Biosynthesis and Immunological Evaluation of a Dual-Antigen Nanoconjugate Vaccine Against Brucella melitensis

Author information +
History +

Abstract

Brucellosis, caused by Brucella, is one of the most common zoonosis. However, there is still no vaccine for human use. Although some live attenuated vaccines have been approved for animals, the protection effect is not ideal. In this study, we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella. First, the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology, and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system. After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine, the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration. These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell (Th1) and Th2 immune responses and protected mice from Brucella infection. Furthermore, we found that this protective effect was maintained for at least 18 weeks. To our knowledge, this is the first Brucella vaccine bearing diverse antigens, including a protein and polysaccharide, on a single nanoparticle. Thus, we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.

Graphical abstract

Keywords

Protein glycan coupling technology (PGCT) / Dual-antigen / Nanoconjugate vaccine / Brucella melitensis

Cite this article

Download citation ▾
Jing Huang, Yufei Wang, Kangfeng Wang, Shulei Li, Peng Sun, Yan Guo, Jiankai Liu, Ruifu Yang, Ming Zeng, Chao Pan, Hengliang Wang, Li Zhu. Biosynthesis and Immunological Evaluation of a Dual-Antigen Nanoconjugate Vaccine Against Brucella melitensis. Engineering, 2023, 29(10): 95‒109 https://doi.org/10.1016/j.eng.2023.04.007

References

[1]
A. Pandey, A. Cabello, L. Akoolo, A. Rice-Ficht, A. Arenas-Gamboa, D. McMurray, et al.. The case for live attenuated vaccines against the neglected zoonotic diseases brucellosis and bovine tuberculosis. PLoS Negl Trop Dis, 10 (8) ( 2016), Article e0004572. DOI: 10.1371/journal.pntd.0004572
[2]
U.S. Vishnu, J. Sankarasubramanian, P. Gunasekaran, J. Rajendhran. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infect Genet Evol, 55 ( 2017), pp. 151-158
[3]
J. McDermott, D. Grace, J. Zinsstag. Economics of brucellosis impact and control in low-income countries. Rev Sci Tech, 32 (1) ( 2013), pp. 249-261. DOI: 10.20506/rst.32.1.2197
[4]
R. López-Santiago, A.B. Sánchez-Argáez, L.G. De Alba-Núñez, S.L. Baltierra-Uribe, M.C. Moreno-Lafont. Immune response to mucosal Brucella infection. Front Immunol, 10 ( 2019), Article 1759
[5]
S. Christopher, B.L. Umapathy, K.L. Ravikumar. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians, 2 (2) ( 2010), pp. 55-60
[6]
K.B. García-Méndez, S.M. Hielpos, P.F. Soler-Llorens, V. Arce-Gorvel, C. Hale, J.P. Gorvel, et al.. Infection by Brucella melitensis or Brucella papionis modifies essential physiological functions of human trophoblasts. Cell Microbiol, 21 (7) ( 2019), Article e13019
[7]
N.V. Ganesh, J.M. Sadowska, S. Sarkar, L. Howells, J. McGiven, D.R. Bundle. Molecular recognition of Brucella A and M antigens dissected by synthetic oligosaccharide glycoconjugates leads to a disaccharide diagnostic for brucellosis. J Am Chem Soc, 136 (46) ( 2014), pp. 16260-16269. DOI: 10.1021/ja5081184
[8]
Z. Sadeghi, M. Fasihi-Ramandi, M. Azizi, S. Bouzari. Mannosylated chitosan nanoparticles loaded with FliC antigen as a novel vaccine candidate against Brucella melitensis and Brucella abortus infection. J Biotechnol, 310 ( 2020), pp. 89-96
[9]
S.C. Oliveira, G.H. Giambartolomei, J. Cassataro. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines, 10 (9) ( 2011), pp. 1291-1305. DOI: 10.1586/erv.11.110
[10]
C. Pan, H. Yue, L. Zhu, G.H. Ma, H.L. Wang. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev, 176 ( 2021), Article 113867
[11]
G. Gomez, L.G. Adams, A. Rice-Ficht, T.A. Ficht. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol, 3 ( 2013), p. 17
[12]
J. Cassataro, K.A. Pasquevich, S.M. Estein, D.A. Laplagne, C.A. Velikovsky, S. de la Barrera, et al.. A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev. 1 vaccination. Vaccine, 25 (22) ( 2007), pp. 4437-4446
[13]
R. Rappuoli. Glycoconjugate vaccines: principles and mechanisms. Sci Transl Med, 10 (456) ( 2018), p. 10
[14]
Z. Peng, J. Wu, K. Wang, X. Li, P. Sun, L. Zhang, et al.. Production of a promising biosynthetic self-assembled nanoconjugate vaccine against Klebsiella pneumoniae serotype O 2 in a general Escherichia coli host. Adv Sci, 8 (14) ( 2021), Article e2100549
[15]
T.E. MacCalman, M.K. Phillips-Jones, S.E. Harding. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev, 35 (2) ( 2019), pp. 93-125. DOI: 10.1080/02648725.2019.1703614
[16]
C. Pan, P. Sun, B. Liu, H. Liang, Z. Peng, Y. Dong, et al.. Biosynthesis of conjugate vaccines using an O-linked glycosylation system. MBio, 7 (2) ( 2016), pp. e00443-516
[17]
P. Sun, C. Pan, M. Zeng, B. Liu, H. Liang, D. Wang, et al.. Design and production of conjugate vaccines against S. Paratyphi A using an O-linked glycosylation system in vivo. npj Vaccines, 3(1):4 ( 2018)
[18]
X. Li, C. Pan, Z. Liu, P. Sun, X. Hua, E. Feng, et al.. Safety and immunogenicity of a new glycoengineered vaccine against Acinetobacter baumannii in mice. Microb Biotechnol, 15 (2) ( 2022), pp. 703-716
[19]
J. Huang, C. Pan, P. Sun, E. Feng, J. Wu, L. Zhu, et al.. Application of an O-linked glycosylation system in Yersinia enterocolitica serotype O:9 to generate a new candidate vaccine against Brucella abortus. Microorganisms, 8 (3) ( 2020), p. 436. DOI: 10.3390/microorganisms8030436
[20]
A.C. Gomes, M. Mohsen, M.F. Bachmann. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines, 5 (1) ( 2017), p. 5. DOI: 10.17058/rea.v25i1.3547
[21]
X. Li, C. Pan, P. Sun, Z. Peng, E. Feng, J. Wu, et al.. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res, 15 (2) ( 2022), pp. 1645-1653. DOI: 10.1007/s12274-021-3713-4
[22]
Y. Shi, C. Pan, K. Wang, Y. Liu, Y. Sun, Y. Guo, et al.. Construction of orthogonal modular proteinaceous nanovaccine delivery vectors based on mSA-biotin binding. Nanomaterials, 12 (5) ( 2022), p. 12. DOI: 10.1515/ijmr-2020-8074
[23]
K.D. Brune, M. Howarth. New routes and opportunities for modular construction of particulate vaccines: stick, click, and glue. Front Immunol, 9 ( 2018), p. 1432
[24]
J.M. Dow, M. Mauri, T.A. Scott, B.W. Wren. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines, 19 (6) ( 2020), pp. 507-527. DOI: 10.1080/14760584.2020.1775077
[25]
J. Ding, Y. Pan, H. Jiang, J. Cheng, T. Liu, N. Qin, et al.. Whole genome sequences of four Brucella strains. J Bacteriol, 193 (14) ( 2011), pp. 3674-3675
[26]
Y. Zhang, T. Li, J. Zhang, Z. Li, Y. Zhang, Z. Wang, et al.. The Brucella melitensis M5-90 phosphoglucomutase (PGM) mutant is attenuated and confers protection against wild-type challenge in BALB/c mice. World J Microbiol Biotechnol, 32 (4) ( 2016), p. 58. DOI: 10.3109/09513590.2015.1078303
[27]
Z. Li, J. Zhang, K.E. Zhang, Q. Fu, Z. Wang, T. Li, et al.. Brucella melitensis 16MΔTcfSR as a potential live vaccine allows for the differentiation between natural and vaccinated infection. Exp Ther Med, 10 (3) ( 2015), pp. 1182-1188. DOI: 10.3892/etm.2015.2619
[28]
S. Deqiu, X. Donglou, Y. Jiming. Epidemiology and control of brucellosis in China. Vet Microbiol, 90 (1-4) ( 2002), pp. 165-182
[29]
Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 81 (7) ( 2015), pp. 2506-2514
[30]
D.R. Bundle, J. McGiven. Brucellosis: improved diagnostics and vaccine insights from synthetic glycans. Acc Chem Res, 50 (12) ( 2017), pp. 2958-2967. DOI: 10.1021/acs.accounts.7b00445
[31]
K. Yang, B.J. Whalen, R.S. Tirabassi, L.K. Selin, T.S. Levchenko, V.P. Torchilin, et al.. A DNA vaccine prime followed by a liposome-encapsulated protein boost confers enhanced mucosal immune responses and protection. J Immunol, 180 (9) ( 2008), pp. 6159-6167. DOI: 10.4049/jimmunol.180.9.6159
[32]
E.D. Avila-Calderón, A. Lopez-Merino, N. Sriranganathan, S.M. Boyle, A. Contreras-Rodríguez. A history of the development of Brucella vaccines. BioMed Res Int, 2013 ( 2013), Article 743509
[33]
A. Ghasemi, R. Ranjbar, J. Amani. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci, 17 (3) ( 2014), pp. 172-180
[34]
D. Maione, I. Margarit, C.D. Rinaudo, V. Masignani, M. Mora, M. Scarselli, et al.. Identification of a universal group B Streptococcus vaccine by multiple genome screen. Science, 309 (5731) ( 2005), pp. 148-150. DOI: 10.1126/science.1109869
[35]
M. Skwarczynski, I. Toth. Peptide-based synthetic vaccines. Chem Sci, 7 (2) ( 2016), pp. 842-854
[36]
D. Yin, L. Li, D. Song, Y. Liu, W. Ju, X. Song, et al.. A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunol Lett, 175 ( 2016), pp. 1-7
[37]
Y. He, R. Rappuoli, A.S. De Groot, R.T. Chen. Emerging vaccine informatics. J Biomed Biotechnol, 2010 ( 2010), Article 218590
[38]
N. Nazifi, M. Tahmoorespur, M.H. Sekhavati, A. Haghparast, A.M. Behroozikhah. In vivo immunogenicity assessment and vaccine efficacy evaluation of a chimeric tandem repeat of epitopic region of OMP31 antigen fused to interleukin 2 (IL-2) against Brucella melitensis in BALB/c mice. BMC Vet Res, 15 (1) ( 2019), p. 402
[39]
M. Heidary, S. Dashtbin, R. Ghanavati, M. Mahdizade Ari, N. Bostanghadiri, A. Darbandi, et al.. Evaluation of brucellosis vaccines: a comprehensive review. Front Vet Sci, 9 ( 2022), Article 925773
[40]
K.D. Brune, D.B. Leneghan, I.J. Brian, A.S. Ishizuka, M.F. Bachmann, S.J. Draper, et al.. Plug-and-display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci Rep, 6 (1) ( 2016), Article 19234
[41]
Z. Chen, Y. Zhu, T. Sha, Z. Li, Y. Li, F. Zhang, et al.. Design of a new multi-epitope vaccine against Brucella based on T and B cell epitopes using bioinformatics methods. Epidemiol Infect, 149 ( 2021), Article e136
[42]
T. Sha, Z. Li, C. Zhang, X. Zhao, Z. Chen, F. Zhang, et al.. Bioinformatics analysis of candidate proteins Omp2b, P39 and BLS for Brucella multivalent epitope vaccines. Microb Pathog, 147 ( 2020), Article 104318
[43]
H. Singha, A.I. Mallick, C. Jana, N. Fatima, M. Owais, P. Chaudhuri. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against Brucella abortus. Vaccine, 29 (29-30) ( 2011), pp. 4720-4727
[44]
H. Zhang, H. Zheng, P. Guo, L. Hu, Z. Wang, J. Wang, et al.. Broadly protective CD8+ T cell immunity to highly conserved epitopes elicited by heat shock protein gp96-adjuvanted influenza monovalent split vaccine. J Virol, 95 (12) ( 2021), p. 95
[45]
B. Pulendran, P.S. Arunachalam, D.T. O’Hagan. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov, 20 (6) ( 2021), pp. 454-475. DOI: 10.1038/s41573-021-00163-y
[46]
S. Yousefi, T. Abbassi-Daloii, M. Tahmoorespur, M.H. Sekhavati. Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis?. Iran J Basic Med Sci, 22 (4) ( 2019), pp. 360-366
[47]
C.M. Fernandez-Prada, E.B. Zelazowska, M. Nikolich, T.L. Hadfield, R.M. Roop 2nd, G.L. Robertson, et al.. Interactions between Brucella melitensis and human phagocytes: bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun, 71 (4) ( 2003), pp. 2110-2119
[48]
M.O. Eze, L. Yuan, R.M. Crawford, C.M. Paranavitana, T.L. Hadfield, A.K. Bhattacharjee, et al.. Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infect Immun, 68 (1) ( 2000), pp. 257-263
[49]
M. Abkar, A.S. Lotfi, J. Amani, K. Eskandari, M.F. Ramandi, J. Salimian, et al.. Survey of Omp 19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun, 39 (4) ( 2015), pp. 217-228. DOI: 10.1007/s11259-015-9645-2
[50]
Y. Lin, Y. He. Ontology representation and analysis of vaccine formulation and administration and their effects on vaccine immune responses. J Biomed Semantics, 3 (1) ( 2012), p. 17. DOI: 10.1186/2041-1480-3-17
[51]
M.C. Moran, M.P. Dominguez, A.R. Bence, M.G. Rodriguez, F.A. Goldbaum, V. Zylberman, et al.. Evaluation of the efficacy of polymeric antigen BLSOmp 31 formulated in a new cage-like particle adjuvant (ISPA) administered by parenteral or mucosal routes against Brucella ovis in BALB/c mice. Res Vet Sci, 145 ( 2022), pp. 29-39
[52]
S. Haase, K. Banerjee, A.A. Mujeeb, C.S. Hartlage, F.M. Núñez, F.J. Núñez, et al..H3.3-G 34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. J Clin Invest, 132 (22) ( 2022), p. 132
[53]
I. Salewski, S. Kuntoff, A. Kuemmel, R. Feldtmann, S.B. Felix, L. Henze, et al.. Combined vaccine-immune-checkpoint inhibition constitutes a promising strategy for treatment of dMMR tumors. Cancer Immunol Immunother, 70 (12) ( 2021), pp. 3405-3419. DOI: 10.1007/s00262-021-02933-4
[54]
M.C. Lin, Y.C. Lin, S.T. Chen, T.H. Young,P.J. Lou. Therapeutic vaccine targeting Epstein-Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer, 17 (1) ( 2017), p. 18
[55]
N. Nezafat, Z. Karimi, M. Eslami, M. Mohkam, S. Zandian, Y. Ghasemi. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem, 62 ( 2016), pp. 82-95
[56]
L. Morici, A.G. Torres, R.W. Titball. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin Exp Immunol, 196 (2) ( 2019), pp. 178-188. DOI: 10.1111/cei.13286
[57]
C.P. Arevalo, M.J. Bolton, V. Le Sage, N. Ye, C. Furey, H. Muramatsu, et al.. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science, 378 (6622) ( 2022), pp. 899-904. DOI: 10.1126/science.abm0271
[58]
A. Das, N. Ali. Nanovaccine: an emerging strategy. Expert Rev Vaccines, 20 (10) ( 2021), pp. 1273-1290. DOI: 10.1080/14760584.2021.1984890
[59]
S. Mani, T. Wierzba, R.I. Walker. Status of vaccine research and development for Shigella. Vaccine, 34 (26) ( 2016), pp. 2887-2894

This work was supported by the National Key Research and Development Program of China (2021YFC2102100), the National Natural Science Foundation of China (U20A20361, 32271507, 81930122, and 82171819), and the Beijing Postdoctoral Research Foundation (2021-ZZ-035).

Funding
the National Key Research and Development Program of China(2021YFC2102100); the National Natural Science Foundation of China(U20A20361); the National Natural Science Foundation of China(32271507); the National Natural Science Foundation of China(81930122); the National Natural Science Foundation of China(82171819); the Beijing Postdoctoral Research Foundation(2021-ZZ-035)
AI Summary AI Mindmap
PDF(4347 KB)

Accesses

Citations

Detail

Sections
Recommended

/